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Long-wavelength limit of the dynamical local-field factor and dynamical conductivity
of a two-component plasma
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A systematic approach to the optical conductivity is given within a dielectric function formalism. The

response function as well as the dynamical local-field factorG(kW ,v) of an electron-ion plasma can be ex-
pressed in terms of determinants of equilibrium correlation functions which allow for a perturbative treatment.
The dynamical collision frequencyn(v)52 ivpl

2 G(0,v)/v for fully ionized weakly coupled plasmas is evalu-
ated in the low-density limit. A renormalization function is given to describe the effects of higher moments of
the distribution function, thus the Spitzer formula is reproduced in the static limit. The existence of the third
moment sum rule can be shown analytically. Numerical calculations are presented for the dynamical conduc-
tivity of hydrogen plasmas at solar core conditions.

PACS number~s!: 52.25.Mq, 05.30.Fk, 71.45.Gm
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I. INTRODUCTION

For a charged particle system, the longitudinal dielec
functione(kW ,v) contains important information about diffe
ent physical properties. It can be directly related to the w
vector (kW ) and frequency (v) dependent conductivity
s(kW ,v) describing transport phenomena viae(kW ,v)51
1 is(kW ,v)/(e0v). In particular, optical properties such a
the refraction index, absorption coefficient, reflectivity, a
bremsstrahlung are obtained considering the lo
wavelength limit of the dielectric functione(0,v) or the dy-
namical conductivitys(0,v)5s(v), respectively.

With the advent of high-intensity femtosecond lasers
became feasible to produce nonideal plasmas at high de
ties and temperatures in the laboratory. The reflectivity a
opacity of such laser-produced plasmas have been d
mined in a number of experiments, see@1–4#.

The static limit of the frequency-dependent conductiv
is related to the dc conductivitysdc,

sdc5 lim
v→0

lim
k→0

i e0v@12e~kW ,v!#. ~1!

Several approaches are known that evaluatesdc ande(kW ,v),
leading to results which do not always fulfill the relation~1!.
Our main interest is to show which approximations have
be performed in evaluatinge(kW ,v) for weakly coupled plas-
mas at arbitrary degeneracy so that standard results forsdc
are also reproduced.

The dc conductivity of a fully ionized plasma in the no
degenerate, weak-coupling limit is given by the Spitzer f
mula @5#. To include higher-density effects, a systema
many-particle treatment can be applied@6#. Using a general-
ized version of the linear-response theory@7,8#, the connec-
tion to methods derived from kinetic equations@5,9–11# can
easily be shown within the binary collision approximation.
contrast to the Kubo formula, expressions occurring in t
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generalized linear-response theory are of the type of fo
force correlation functions and seem to be more appropr
for applying perturbation expansions for the dc conductivi
As a result, rigorous virial expansions have been given
the low-density limit @7,12#. A recent review considering
general transport processes in dense plasmas is found in@13#.

On the other hand, the dielectric function of a charge
particle system at finite frequencies can be obtained from
perturbation expansion of the Kubo formula@14#, see also
@15#. The dynamical conductivity of hot dense plasmas w
investigated by different groups, see@16–18#, starting from a
Ziman formula @19# which was generalized for finite fre
quencies. Experimental data for metallic vapors at high d
sities @20#, for a recent review see@21#, or for the electrical
resistivity of dense, laser pulse heated aluminum@22# are
described successfully.

However, there exist parameter values corresponding
nondegenerate, weakly nonideal plasmas where the dc
of the dynamical conductivity should be described by t
Spitzer formula. The objective of this paper is to give a mo
general approach which refers also to fully ionized plasm
at low densities and high temperatures where the Spitzer
mula and its improvements are applicable. For this case,
pressions will be given for the dynamical conductivity.
renormalization factor is introduced to describe the effect
higher moments of the distribution function on the optic
conductivity.

We follow the general treatment@23–26# given recently
which bridges between the dielectric function and the
conductivity. The main ingredient of the generalized line
response theory@27# is a set of relevant observables whic
was introduced in correspondence to moments of the di
bution function. In the present paper we elaborate the ap
cation of this approach to the dynamical response o
charged-particle system. Our objective is to show the leve
approximation for the dynamical conductivity which is ne
essary in order to reproduce advanced treatments of th
5648 ©2000 The American Physical Society
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conductivity, such as dynamical screening and inclusion
strong collisions, for fully ionized plasmas in the limit o
small coupling parameters.

In the following, we consider a nonrelativistic charge
particle system with componentsc ~massmc , chargeec ,
spin sc! described by the Hamiltonian

H5(
p,c

Ep
cap,c

† ap,c

1
1

2 (
pp8q,cc8

Vcc8~q!ap2q,c
† ap81q,c8

† ap8,c8ap,c . ~2!

Ep
c5\2p2/(2mc) is the kinetic energy, Vcc8(q)

5ecec8 /(e0V0q2) the Coulomb interaction,V0 the normal-
ization volume, andap,c

† denotes the creation operator of

particle of componentc with momentum\pW . In particular,
we will restrict ourselves to a two-component~hydrogen!
plasma consisting of electrons and ions~protons! so thatc
5e,i . The spin variable will be included in the indexc, and
spin summations are performed in the final expressions
an example, fully ionized hydrogen plasma is considered

The paper is organized as follows: In Sec. II general
pressions are given for the dynamical local-field factor a
the dynamical collision frequency in terms of equilibriu
correlation functions, which allow for a perturbative trea
ment. In Sec. III we consider the long-wavelength limit. G
ing beyond the Born approximation, partial summations
performed describing dynamical screening and strong c
sions so that results for the dynamical conductivity ma
with results for the dc conductivity. Numerical results a
presented for hydrogen plasmas at solar core conditions
sum rules are checked. In Sec. IV the convergence of
different collision terms and the inclusion of higher mome
of the distribution function are discussed.

II. LINEAR-RESPONSE APPROACH FOR THE
DIELECTRIC FUNCTION

A. Dynamical local-field factor and Drude formula

The calculation of the longitudinal dielectric function

e~kW ,v!512
1

e0k2
P~kW ,v! ~3!

for a charged fermion system, Eq.~2!, in the lowest order
with respect to the interaction gives the random-phase
proximation ~RPA! @28,29# for the polarization function
P(kW ,v),

PRPA~kW ,v!5
1

V0
(
p,c

ec
2

f p1k/2
c 2 f p2k/2

c

DEp,k
c 2\~v1 ih!

, ~4!

with DEp,k
c 5Ep1k/2

c 2Ep2k/2
c 5\2kW•pW /mc . Here, f p

c

5@exp(bEp
c2bmc)11#21 denotes the Fermi distributio

function, b51/(kBT) the inverse temperature, andmc the
chemical potential of speciesc. The limit h→0 has to be
taken after the thermodynamic limit.

Taking into account interaction processes, improveme
of the RPA have been discussed extensively. A simple
f
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pirical approach to include scattering processes between
ticles and describe the optical conductivity is the frequen
used Drude model~see, e.g., Ref.@14#! s(v)5e0vpl

2 /(2 iv
1t21) with a relaxation timet and the plasma frequenc
vpl5@(cec

2nc /(e0mc)#1/2.
A more systematic approach is possible by introducin

dynamical local-field factorG(kW ,v) @30# according to

P~kW ,v!5PRPA~kW ,v!/@11G~kW ,v!PRPA~kW ,v!/~e0k2!#.

Different approximative methods to determineG(kW ,v) have
been developed such as perturbation expansions@31#, the
parametrization of the dielectric function via sum rul
@32,33#, or a time-dependent mean-field theory@34#. A quan-
tum statistical approach to the dynamical local-field fact
at finite temperatures and arbitrary degeneracy was given
the authors in@25#. Using the relation

G~kW ,v!5e0k2F 1

P~kW ,v!
2

1

PRPA~kW ,v!
G , ~5!

and performing a perturbation expansion for the inverse
the polarization functionP21(kW ,v), which goes beyond
first-order local-field corrections in order to include col
sions, this approach allows the direct connection to
theory of conductivity.

Considering the local-field factor in the long-waveleng
limit and taking into account the RPA resu
limk→0PRPA(kW ,v)5e0vpl

2 k2/v2, we find a Drude-like ex-
pression for the optical conductivity

s~v!5
e0vpl

2

2 iv@11vpl
2 ReG~0,v!/v2#1t21~v!

5
e0vpl

2

2 i @v1 in~v!#
~6!

with a frequency-dependent relaxation timet21(v)
5vpl

2 Im G(0,v)/v. Alternatively, we can introduce a com
plex dynamical collision frequency

n~v!52 i
vpl

2

v
G~0,v!. ~7!

The dc conductivity should result in the limitv→0,

sdc5 lim
v→0

e0vpl
2

n~v!
5 i lim

v→0

e0v

G~0,v!
. ~8!

Before discussing the perturbation expansion of these
pressions, we point out that the consistency of a given
proximation can be checked by the inspection of certain s
rules

E
2`

` dv

p
vn Im e61~kW ,v1 i0!5Sn

(6)~kW !, ~9!

see, e.g.,@14#. We will focus on thef sum rule S1
(2)(kW )

52vpl
2 , the conductivity sum ruleS1

(1)(kW )5vpl
2 , and the
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third-moment sum ruleS3
(2)(kW ). The latter has to be a finite

value which is related to quantities such as the mean kin
energy. An important point is that the third-moment sum r
is not convergent for the empirical Drude model approxim
tion, which is obtained from Eq.~6! if taking the relaxation
time t as independent of frequency.

B. Linear-response theory

Within linear-response theory the longitudinal and tra
verse part of the dielectric function can be expressed by e
librium correlation functions. Both expressions become id
tical @14# in the long-wavelength limit in which we ar
interested. Having this in mind, the relations relevant for
longitudinal dielectric function are presented.

A generalized version of the linear-response theory
been given recently@27# leading to the following expressio
for the response function@23#:

x~kW ,v!5 ibV0

k2

v

1

M ~kW ,v!
, ~10!
i
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with the inverse response function

M ~kW ,v!5uMlm~kW ,v!uY U 0 M0m~kW ,v!

Ml0~kW ,v! Mlm~kW ,v!
U .

~11!

The matrix elementsMi j (kW ,v) of the determinants are give
by equilibrium correlation functions of an appropriately ch
sen set of quantum operators$A1 ,A2 , . . . ,Al , . . . % which
allows us to represent the electrical current-density oper

JW k
el5

1

V0
(
p,c

ec

mc
\pW np,k

c ~12!

as a linear combination thereof;np,k
c 5ap2k/2,c

† ap1k/2,c is the
Wigner density. We have

M0m~kW ,v!5~JW k
el ;Am!, Ml0~kW ,v!5~Al ;JW k

el!. ~13!

The elements of the submatrixMlm(kW ,v) are given by ma-
trix operations according to
Mlm~kW ,v!52 iv~Al ;Am!2~Ȧl ;Am!1^Ȧl ;Ȧm&v1 ih1U 0 ^Ȧl ;Aj&v1 ih

^Ai ;Ȧm&v1 ih ^Ai ;Aj&v1 ih
UY u^Ai ;Aj&v1 ihu. ~14!
y
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The equilibrium correlation functions are

~A;B!5
1

bZE0

b

dt TrFe2bH1b(
c

mcNcA~2 i\t!B†G

5
1

bE2`

` dv8

p

1

v8
Im G AB†~v81 ih!,

^A;B&z5E
0

`

dt eizt
„A~ t !;B…

5
i

bE2`

` dv8

p

1

z2v8

1

v8
Im G AB†~v81 ih!, ~15!

and Ȧ5( i /\)@H,A#, Z5Tr e2bH1b(cmcNc. As already
mentioned above, the limith→0 in z5v1 ih has to be
taken after the thermodynamic limit. The thermodynam
Green functions are obtained from the analytical contin
tion of G AB†(vm). They are calculated below at the Matsu
ara frequenciesvm using perturbation theory represented
diagram techniques.

From the response functionx(kW ,v), the polarization func-
tion can be deduced by P(kW ,v)5x(kW ,v)/@1
1x(kW ,v)/(e0k2)#, and subsequently the dynamical loca
field factorsG(kW ,v) are directly related to the inverse re
sponse functionM (kW ,v) according to
c
-

G~kW ,v!52 i
e0v

bV0
M ~kW ,v!2e0k2

1

PRPA~kW ,v!
11.

~16!

To evaluate the general expression~11! for M (kW ,v) the
set of quantum operators$Al% needs to be specified. The
define the rank of the matrices in Eq.~11!. Following the
framework known from standard transport theory@5# such as
the Chapman-Enskog@9# or the Grad method@10# for the dc
conductivity, the set of quantum operators$Al% is chosen as
moments of the single-particle distribution function of ea
component of the system@8,23# taking

$Al% →PW k,n
c 5(

p
\pW ~bEp

c!nnp,k
c . ~17!

The first moments (n50;c5e,i ) are the momentum opera
tors of the corresponding species. The electrical curre
density operator~12! can easily be expressed as a linear co
bination of these observables. The second moments (n51)
are relevant in connection with the thermopower and ther
conductivity since they describe the current operators of
kinetic energy, see@8#.

The approach by Eqs.~10!–~14! and~17! has been inves-
tigated in @23,24# with the current-density operatorJW k

e

5eePW k,0
e /(meV0) of the electron system as the only consi

ered relevant observable. The correlation functions w
evaluated in the Born approximation. Before discussing
more general case in Sec. IV, we consider the first-mom
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approach given by$Al%→$JW k
e ,JW k

i % in Sec. III. Within this
choice of relevant observables, we obtain according to
~14! the following expression for the ratio of determinants
M (kW ,v), Eq. ~11!:

MJJ~kW ,v!52
1

^JW k
el ;JW k

el&v1 ih

~18!

52
1

~JW k
el ;JW k

el!2
F2 iv~JW k

el ;JW k
el!1^JẆ k

el;JẆ k
el&v1 ih

2
^JẆ k

el;JW k
el&v1 ih^JW k

el ;JẆ k
el&v1 ih

^JW k
el ;JW k

el&v1 ih

G . ~19!

The first relation, which is obtained after partial integr
tion @23#, shows the coincidence with the Kubo formula.
contrast to the current-current correlation function itself,
inverse response functionMJJ(kW ,v) can be expanded in per
turbation theory avoiding singularities at zero wave vect
appearing otherwise already in the lowest order.

It can be shown by formal manipulations@35# that the
results for the physical quantities given above are indep
dent of the choice made for the set of quantum opera
$Al% as long as the correlation functions are evaluated rig
ously ~and the limith→0 is performed in the final expres
sions!. However, finite-order perturbation theory will lead
different results, depending on the choice of quantum op
tors $Al%. In this context, the relation to the Kubo formu
@6,14# has been discussed before in earlier papers@7,23#.

C. Perturbation expansion of correlation functions

Having specified the set of quantum operators$Al% as

$JW k
e ,JW k

i %, we have to evaluate equilibrium correlation fun
tions, Eq.~15!, in order to find general expressions for th
dynamical local-field factorG(kW ,v), Eq. ~16!, and the re-
lated quantitiesx(kW ,v),P(kW ,v),s(kW ,v).

The correlation function (JW k
c ;JW k

c8) contained in (JW k
el ;JW k

el)
can be related to the commutator of position operator
operator of linear momentum~cf. @7#!. With the particle den-
sity nc we find the exact relations

~JW k
c ;JW k

c8!5dcc8

ec
2nc

mcbV0
and ~JW k

el ;JW k
el!5

e0vpl
2

bV0
. ~20!

The current-current correlation function occurring in the
verse response functionMJJ(kW ,v), Eqs.~18! or ~19!, reads

^JW k
c ;JW k

c8&v1 ih5
\2

V0
2

ecec8

mcmc8
(
pp8

pzpz8^np,k
c ;np8,k

c8 &v1 ih .

~21!

The wave vectorkW5keW z is taken in thez direction and the
system is considered to be isotropic. Further correlat
functions arise where the particle current operatorsJW k

c are

replaced by time derivatives~‘‘forces’’ ! JẆ k
c. Applying the
q.

-

e

r,

n-
rs
r-

a-

d

-

n

commutator relation of the Hamiltonian with the current o
erators, Eq.~12!, we arrive at expressions containing

ṅp,k
c 5

i

\
@H,np,k

c #52
ik

mc
\pznp,k

c 1vp,k
c ,

vp,k
c 5

i

\ (
p8qp̄d

Vcd~q!$d p̄,p2q/22d p̄,p1q/2%

3ap̄2k/22q/2,c
†

ap81q/2,d
† ap82q/2,dap̄1k/21q/2,c .

~22!

Due to the potential-dependent partvp,k
c higher-order corre-

lation functions will occur.
Let us now analyze the perturbation expansion of the

pression~19! with respect to the coupling parametere2 @36#.
In lowest order with respect toe2 @37# we haveMJJ

(0)(kW ,v)

5 ibV0k2/@vPRPA(kW ,v)# and subsequentlyG(0)(0,v)50
since the last term in Eq.~16! contributes in next order only

Notice that contributions in the lowest order arise fromJẆ k
el

which are produced from the kinetic part ofṅp,k
c , Eq. ~22!,

not from the interaction partvp,k
c .

In the next order of perturbation expansion, addition
diagrams have to be considered adding one interaction
The corresponding dynamical local-field factor which is r
lated to quantum effects is given in Appendix A 1. It do
not contribute to optical conductivities in the long
wavelength limitk→0. Expanding the last brackets in E
~A2! in this limit shows that the first-order expression is}k2

@24,26# and limk→0M (1)(kW ,v)50.
In order to allow for the inclusion of collisions which ar

of importance to obtain optical conductivities, we consid
the second order of perturbation expansionM (2)(kW ,v). Some
general expressions are given in Appendix A 1. Here we
cus on the long-wavelength limit, where the local-field fac
G(0,v), Eq. ~16!, vanishes up to first order as discuss
above. According to the long-wavelength limit of Eq.~A6!
the force-force correlation function in Eq.~19!,

^JẆ0
el;JẆ0

el&v1 ih5
\2

V0
2 (

pp8,cc8

ecec8

mcmc8

pzpz8 lim
k→0

^vp,k
c ;vp8,k

c8 &v1 ih

~23!

is of the ordere6. The last term in Eq.~19! contains corre-

lation functionŝ JW k
el ;JẆ k

el&v1 ih ,^JẆ k
el ;JẆ k

el&v1 ih also being of the
ordere6. This can be shown by diagram expansions or, m
directly, making use of partial integration and the fact th
due to the Kubo identity (A;Ȧ)5 i ^@A,A#&/(\b)50 so that

^JW0
el;JẆ0

el&z5(1/z)^JẆ0
el;JẆ0

el&z , which is at least of the ordere6.

In contrast, the correlation function̂JW0
el;JW0

el&v1 ih is of the
order e2, cf. the RPA result for the polarization functio
PRPA(0,v)5e0vpl

2 k2/v2. All together, the last contribution
in Eq. ~19! is of higher order (e10) compared with

^JẆ0
el;JẆ0

el&v1 ih . Therefore, the second-order contribution
the dynamical local-field factor in the long-wavelength lim
is
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G(2)~0,v!5 i
v

vpl
2

n (2)~v!5 iv
bV0

e0vpl
4 ^JẆ0

el;JẆ0
el&v1 ih

(2) .

~24!

III. FREQUENCY-DEPENDENT CONDUCTIVITY

In order to calculate the dynamical collision frequenc
see Eqs.~23! and ~24!, the correlation function

^vp,k
c ;vp8,k

c8 &v1 ih

5
1

\2 (
dd8qq8 l l 8 p̄p̄8

Vcd~q!Vc8d8~q8!

3$d p̄,p2q/22d p̄,p1q/2%

3$d p̄8,p82q8/22d p̄8,p81q8/2%

3^ap̄2k/22q/2,c
†

al 1q/2,d
† al 2q/2,d

3ap̄1k/21q/2,c ;ap̄82k/22q8/2,c8
†

al 81q8/2,d8
†

3al 82q8/2,d8ap̄81k/21q8/2,c8&v1 ih ~25!

will be evaluated using the relation~15! to the corresponding
four-particle Green functionGvv(vm) ~the single-particle
variables are omitted!, see Fig. 1. Details are presented
Appendixes A 2–A 4.

In the lowest approximation with respect to the interact
~Born approximation, see Fig. 2 and Appendix A 2!, we find
according to Eq.~A8! the complex dynamical collision fre
quency

nBorn~v!5 i
4\

V0nm (
pp8q

eb(DE
p8,q
i

2DEp,q
e )21

DEp8,q
i

2DEp,q
e

qz
2Vei

2 ~q!

3
f p81q/2

i
~12 f p82q/2

i
! f p2q/2

e ~12 f p1q/2
e !

\~v1 ih!1DEp8,q
i

2DEp,q
e

.

~26!

The reduced massm215me
211mi

21 follows from the sum
over the species withee52ei5e, ne5ni5n. The factor 4
is due to the summation over spin variables,se5si51/2. For
DEp,q

c see Eq.~4!. Due to momentum conservation there
no contribution from the interactions between particles of
same component in this one-moment approach.

The corresponding dc conductivity, Eq.~8!, is applicable
to short-range interactions. However,sdc

Born5e0vpl
2 /nBorn(0)

FIG. 1. Representation of the Green functionGvv(vm) by Feyn-
man diagrams.
,

e

cannot be considered as a correct expression for the dc
ductivity of a Coulomb system, Eq.~2!, for different reasons:
Due to the long-range character of the Coulomb interacti
the Born approximation is divergent. Screening has to
taken into account. Strong collisions may occur so tha
T-matrix approach is necessary. This way, the correct C
lomb logarithm for the low-density limit will be obtained
performing the corresponding partial summations. Furth
more, to reproduce the correct prefactor of the Spitzer f
mula, which is valid in the nondegenerate, low-density lim
higher moments of the distribution function, Eq.~17!, need
to be taken into account.

These arguments, well known from the evaluation of t
dc conductivity of a plasma, see@7#, apply also to the more
general case of the dynamical conductivity. We reconsi
the evaluation of

n~v!'
b\2

V0e0vpl
2 (

pp8,cc8

ecec8

mcmc8

pzpz8 lim
k→0

^vp,k
c ;vp8,k

c8 &v1 ih

~27!

beyond Born approximation by including higher-order term
of the perturbation expansion. In particular, we introduce
dynamically screened interaction by summation over r
diagrams, and consider the Born approximation with resp
to the screened interaction. Furthermore, performing the
tial summation over the ladder diagrams, the T-matrix is
troduced describing binary collisions in the correct way.
include the effects of higher densities, further diagrams
be included such as self-energy corrections and three-ve
terms. However, in the present work we consider only
low-density limit of the dynamical conductivity, where sel
energy corrections and three-vertex terms can be dropped
the arguments given in the case of the dc conductivity in@7#.

A. Dynamical screening

1. Summation of ring diagrams

Comparing with the simple Born approximation, ring di
grams are produced replacing a simple loop by a chain
loops, see Fig. 3. More generally, the summation of all lo
diagrams is included by introducing the dynamica
screened potentialVcc8

s (q,z)5Vcc8(q)/e(q,z), which will
be represented by a wavy line. The screened Born appr
mation is given by the diagrams forGvv(vm) shown in Fig.
4, see also@7#. When evaluating the Green function, which
detailed in Appendix A 3, we use the spectral representa
of the screened potential, see, e.g.@38#,

FIG. 2. Green functionGvv(vm) in the Born approximation.
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Vcc8
s

~q,vn!5Vcc8~q!1Vcc8~q!E dv

p

Im e21~q,v1 i0!

v2vn
.

~28!

Using the relation~3!, the inverse dielectric function can b
expressed by the polarization function

Im e21~q,v1 i0!5
Im P~q,v1 i0!

e0q2ue~q,v!u2
. ~29!

Since we are interested in the low-density limit we can ta
the polarization function and the dielectric function in t
RPA limit, Eq.~4!. As well known@14#, the dynamical struc-
ture factor corresponding to this RPA dielectric function d
scribes excitations in a two-component plasma includin
slightly renormalized electron plasma frequency and an i
acoustic plasma mode. Utilizing

1

e0q2
Im PRPA~q,v1 i0!

52p(
pc

Vcc~q!@ f p1q/2
c 2 f p2q/2

c #d~DEp,q
c 2\v!, ~30!

the dynamical collision frequency, Eq.~27!, in the screened
Born approximation is obtained, see Appendix A 3,

nLB~v!5 i
4\m

V0n (
pp8q

eb(DE
p8,q
i

2DEp,q
e )21

DEp8,q
i

2DEp,q
e

qz
2Vei

2 ~q!

3
f p2q/2

e ~12 f p1q/2
e ! f p81q/2

i
~12 f p82q/2

i
!

\~v1 ih!1DEp8,q
i

2DEp,q
e

3F 1

meueRPA~q,DEp8,q
i /\!u

1
1

mi ueRPA~q,DEp,q
e /\!uG

2

. ~31!

The expression~31! has the same structure as the Born a
proximation, Eq.~26!, except the bare Coulomb interactio
is screened by the full RPA expression of the dielectric fu
tion.

FIG. 3. Example of a contribution to the Green functio
Gvv(vm) in a dynamically screened approximation.
e

-
a
-

-

-

In adiabatic approximation lim(mi /me)→`, the electrons
are considered to scatter from ions at positionsRW j . We find
the following expression for the dynamical collision fre
quency:

nLB~v!52 i
2\ni

mene
(
pq

Vei
2 ~q!Si~q!

ueRPA,e~q,DEp,q
e /\!u2

qz
2

3
f p1q/2

e 2 f p2q/2
e

DEp,q
e 2\~v1 ih!

1

DEp,q
e

5 i
e0niV0

2

6p2e2neme
E

0

`

dq q6Vei
2 ~q!Si~q!

1

v
@eRPA,e

21 ~q,v!

2eRPA,e
21 ~q,0!#, ~32!

where the ion distribution is taken into account by the ion
structure factor Si(q)5( j l exp@iqW•(RW j2RW l)#/(niV0) on the
static level, replacing the ionic contribution to the dielect
function. The remainingeRPA,e(q,v) is determined only by
the electron component of the plasma. Evaluating this a
batic expression for a classical plasma~nondegenerate case!
we find an expression as given before by Bekefi@39# whereas
the zero-temperature limit for a simple metal was conside
by Hopfield@40#. Splitting the dynamical collision frequenc
into real and imaginary parts leads to a Drude-like expr
sion ~6! for the electrical conductivity with a frequency
dependent relaxation time for a dynamically screened C
lomb potential.

In the zero-frequency limit, the imaginary part of the co
lision frequency vanishes. The inverse relaxation time,
rived from Eq.~31!,

1

tLB~0!
5nLB~0!

52
\

V0nm
4 (

pp8q

qz
2

Vei
2 ~q!

ueRPA~q,DEp,q
e !u2

f p2q/2
e

3~12 f p1q/2
e ! f p81q/2

i
~12 f p82q/2

i
!

3d~DEp8,q
i

2DEp,q
e !, ~33!

coincides with the well-known Lenard-Balescu collision i
tegral @41# and has been derived before within the linea
response theory in@7,42#.

The Ziman formula@19# for the dc conductivity can be
found from the adiabatic limit, Eq.~32!,

FIG. 4. Contributions to the Green functionGvv(vm) in a dy-
namically screened Born approximation.
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sdc
Ziman5

e0vpl
2

nZiman~0!

5
12p3\3e2ne

2

V0
2me

2ni
F E

0

`

dq q3
Vei

2 ~q!Si~q!

ueRPA,e~q,0!u2
f q/2

e G21

.

~34!

The inclusion of ion dynamics considering the dynami
ionic structure factor is straightforward and coincides w
the expression~33! for the two-component system if the re
lation between the dynamic structure factor and the dielec
function is taken into account. In this case, the dc conduc
ity is influenced by dynamical screening, and the freque
argument of the dielectric function is an energy-depend
variable. The connection between the Ziman formula and
Lenard-Balescu result was also in investigated in@43#.

With Eq. ~31! and its adiabatic limit, Eq.~32!, we derived
a generalized Drude formula~6! for the optical conductivity.
This result applies to the low-density limit. The dynamic
conductivity from the first-moment approach in screen
Born approximation, Eq.~32!, has also been applied t
higher densities, see@16–18,20,22#. However, instead of the
dynamically screened Coulomb potential a pseudopoten
has been considered. The ionic structure factor was evalu
by standard methods from the theory of liquids. Density
fects were included into the electronic part of the dielec
function describing the screening of the electron-ion inter
tion taking into account local-field factors.

2. Numerical results

The evaluation of the complex collision frequency, E
~31!, has been performed for a hydrogen plasma at the c
ditions of the solar core, i.e.,T596.15 Ry, ne5ni5n
58.9aB

23 . This is a weakly coupled plasma,G
5e2(4pn/3)1/3/(4pe0kBT)50.069, which is not strongly
degenerate,Q52mekBT(3p2n)22/3/\252.34. The screen
ing parameter iskD5(b(cec

2nc /e0)1/252.15/aB and the
plasma frequency\vpl521.15 Ry. In Fig. 5 the real part o

FIG. 5. Real part of the dynamical collision frequencynLB as a
function of frequencyv for a classical electron and a two
component plasma at solar core conditions in comparison to
statically screened Born approximation.
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n-

the collision frequency, Eq.~31!, is compared with the col-
lision frequency of the statically screened Born approxim
tion using e(q,0)511kD

2 /q2 in Eq. ~31!. From Fig. 5 we
deduce that the dynamical collision frequency coincides w
a static description at small frequencies. The high-freque
behavior is also in agreement with the static treatment.
between, a pronounced effect is seen due to the inclusio
dynamical screening. In particular, a peak appears due to
excitation of plasmons, cf. Refs.@40,44#.

The corresponding calculations for the imaginary part
the dielectric function, Eq.~6!, are shown in Fig. 6. The
static evaluation almost coincides with the Drude res
where the collision frequency is approximated by the ze
frequency relaxation time. Differences are obtained by tak
into account dynamical screening. The inset shows the
viation when using a statically screened approximation
comparison to the dynamical evaluation. Of particular int
est is the plasmon peak occurring in the response func
Im e21(kW ,v) and its dispersion as shown in Fig. 7, see a

e

FIG. 6. Dynamical conductivitysLB as a function of frequency
v for a classical two-component plasma at solar core condition
comparison to the statically screened Born approximation.

FIG. 7. Imaginary part of the inverse dielectric function as
function of frequencyv for a classical two-component plasma
solar core conditions in comparison to the statically screened B
approximation and the Drude model.
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@25#. While the Drude model shows the plasmon peak at
plasma frequency the more consistent treatment of the
electric function leads to a shift of the peak in comparison
the plasma frequency due to the imaginary part of the co
sion frequency. The dynamical screening broadens the p
mon peak and reduces the depth of the peak compared
the Drude model.

Note that the approximation of the dielectric function co
sidered here obeys the Kramers-Kronig relation. Since
asymptotic form of the real part of the dielectric function
given by limv→`e(0,v)512vpl

2 /v21•••, the first-moment
sum rules~9! are fulfilled following the argument in Ref
@14#. This has also been checked numerically. To fulfill t
first-moment sum rules, the account of the imaginary par
the collision frequency appears to be crucial. It emphas
that an empirical improvement of the Drude formula intr
ducing solely a frequency-dependent relaxation time d
not obey sum rules, and thus it is not a consistent appr
mation.

The high-frequency behavior of the collision frequency
determined by the Born approximation only, Eq.~26!, as
derived in Appendix B. The imaginary part of the collisio
frequency is found to be proportional tov23/2. It ensures the
existence of the third moment of the imaginary part of t
dielectric function as required by the corresponding s
rule, Eq. ~9!. A comparison between the exact dynamic
screening result and the high-frequency asymptote is sh
in Fig. 8. The Born approximation given in Eq.~B5! coin-
cides with the asymptote for frequencies down to ab
4vpl .

B. Strong collisions

1. Summation of ladder diagrams

Considering the dc conductivity of Coulomb systems,
collision integral in the Born approximation is divergent n
only for small transfer momentaq, which is cured introduc-
ing the dynamically screened interaction as discussed ab
As well known, see, e.g.@8,13#, for large values ofq the
collision integral in the Born approximation is divergent
the classical limit is considered.

FIG. 8. High-frequency limit of the real part of the dynamic
collision frequencynLB as a function of frequencyv for a classical
two-component plasma at solar core conditions.
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This divergence is avoided if higher orders of the pert
bation expansion are taken into account. The behavior
large values ofq is determined by strong binary collision
which are accounted for by summing up the so-called lad
diagrams in the perturbation expansion, see Fig. 9 and
pendix A 4. In the quantum case, the divergence in the B
approximation for large values ofq disappears, because th
corresponding short-range part of the Coulomb potentia
averaged out due to quantum effects. The typical length s
is the thermal wavelength. However, also in the quant
case the correct result in the low-density limit for the
conductivity is only obtained after performing the sum ov
the ladder diagrams@7#. Therefore, it is necessary to take in
account strong binary collisions in order to evaluate the
namical collision frequency in the low-density limit.

We evaluate the correlation function, Eq.~27!, in the limit
k→0. The summation of ladder diagrams in the correspo
ing Matsubara Green functionG vv

ladder(vm) is shown in Ap-
pendix A 4 for arbitrary mass ratiosmi /me . In this section
we consider the adiabatic limitme /mi→0, thus

n ladder~v!5
4b\2

nemeV0
(
pp8

pzpz8^vp,0
e ;vp8,0

e &v1 ih
ladder . ~35!

As already pointed out in the discussion of the Born appro
mation, because of the conservation of the total momen
only the interaction between electrons and ions will contr
ute. With Appendix A 4, Eq.~A15!, we find in the binary
collision approximation

n ladder~v!5
i\

V0neme
(

nn8P

eb(EnP2En8P)21

EnP2En8P

3
gei~EnP!@11gei~En8P!#

\~v1 ih!1EnP2En8P
U (

pe ,pi ,q
cn8P

* ~pe ,pi !

3V~q!qzcnP~pe1q,pi2q!U2

~36!

with cnP(pe ,pi) being the wave function,EnP the energy
eigenvalue for the two-particle state with center-of-mass m
mentum P and internal quantum numbern, and gei(E)
5$exp@b(E2me2mi)#21%21 the Bose distribution function.

By introducing T matrices, the following expression ca
be found@see Appendix A 4, Eqs.~A20! and ~A21!#:

FIG. 9. Green functionGvv(vm) in the ladder approximation.
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n ladder~v!5
i\

V0mene
4 (

pepiq

eb(Ep,0
ei

2Ep,q
ei )21

\~v1 ih!1Ep,0
ei 2Ep,q

ei

1

Ep,0
ei 2Ep,q

ei
f pe

e ~12 f pe1q
e ! f pi

i ~12 f pi2q
i !H ~pe,z1qz!Tei

2~pe ,pi ;q;Ep,0
ei !

2pe,zTei
2~pe ,pi ;q;Ep,q

ei !2(
q8

~pe,z1qz8!Tei
2~pe ,pi ;q8;Ep,0

ei !F 1

Ep,0
ei 2Ep,q8

ei
2 i\h

2
1

Ep,q
ei 2Ep,q8

ei
2 i\hG

3Tei
2~pe1q8,pi2q8;2q81q;Ep,q

ei !J H ~pe,z1qz!Tei
1~pe1q,pi2q;2q;Ep,0

ei !2pe,zTei
1~pe1q,pi2q;

2q;Ep,q
ei !1(

q9
~pe,z1qz9!Tei

1~pe1q,pi2q;2q1q9;Ep,q
ei !F 1

Ep,q
ei 2Ep,q9

ei
1 i\h

2
1

Ep,0
ei 2Ep,q9

ei
1 i\hG

3Tei
1~pe1q9,pi2q9;2q9;Ep,0

ei !J , ~37!
(1
e

th
ing

d-

rt

n
a
h

e
ta
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T

ng

n

ore
of
-

a
rd-

mi-

ort
a-

c

where the abbreviationsTei
6(pe ,pi ;q;E)5Tei

6(pe ,pi ;pe

1q,pi2q;E) and Ep,q
ei 5Epe1q

e 1Epi2q
i were used. The

Fermi functions occurring in the T matrices such as
2 f pe

e 2 f pi

i ) were neglected since we consider the nondeg

erate case in the following. Equation~37! contains the half
off-shell T matrices for the electron-ion scattering, where
energy coincides with either the incoming or the outgo
energy, respectively. In general,

Tei
6~pe ,pi ;q;E!

5Vei~q!1(
q8

Vei~q8!
1

E2Ep,q8
ei

6 ih

3Tei
6~pe1q8,pi2q8;2q81q;E! ~38!

holds for arbitrary values of energyE.
From the complex dynamical collision frequency in la

der approximation followssdc
ladder5e0vpl

2 /n ladder(0) in the
zero-frequency limit. From the general symmetry prope
rhs (v)5@rhs(2v)#* of the right-hand side~rhs! of Eq.
~37!, we conclude that it must be real forv50. Therefore, in
the decomposition due to the Dirac identityi /(v2v81 ih)
5pd(v2v8)1 iP/(v2v8) only thed function describing
the conservation of kinetic energy gives a contributio
Then, products of two on-shell T matrices remain which c
be expressed in terms of scattering phase shifts. The hig
order products of T matrices in Eq.~37! vanish because th
difference in the square brackets is equal to zero. We ob

n ladder~0!5
p\b

V0mene
4 (

pepiq
qz

2f pe

e ~12 f pe1q
e ! f pi

i ~12 f pi2q
i !

3d~Ep,q
ei 2Ep,0

ei !Tei
2~pe ,pi ;q;Ep,0

ei !

3Tei
1~pe1q,pi2q;2q;Ep,0

ei !. ~39!

In an adiabatic approximation, we perform the integrat
over pi to give a factorniV0 and relate the product of the
matrices to the transport cross sectionQ ei

T (k)
5(4p/k2)( l 50

` ( l 11)sin2@dl11
ei (k)2dl

ei(k)#, see Refs.
@7,8,42#, whered l

ei(k) are the scattering phase shifts. Taki
the nondegenerate limit, we obtain
n-

e

y

.
n
er-

in

n

n ladder~0!5
8

3Ap

\ni

me
S b\2

2me
D 5/2E

0

`

dk k5e2b\2k2/~2me!Q ei
T ~k!.

~40!

This way, the correct zero-frequency limit for the collisio
frequency is reproduced.

2. Numerical results

As above, we consider a hydrogen plasma at solar c
conditions. In the following, we perform the evaluation
the expression~37! for an effective interaction potential, re
placing the Coulomb potential byVei

eff(q)52e2/@e0V0(q2

1keff
2 )#, thus avoiding the divergences for smallq. The ef-

fective screening parameterkeff was determined in such
way that the Coulomb logarithm obtained from the Lena
Balescu collision term~33! for the dc conductivity coincides
with the Coulomb logarithm obtained for theVei

eff(q) in the
Born approximation so thatkeff

2 51.47nbe2/e0 @7,42#. This
expression can be interpreted in such a way that the dyna
cal screening corresponds to an effective density 1.47n in
between the electron densityn and the density 2n of elec-
trons and ions.

First, we consider the zero-frequency limit. The transp
cross sectionQ ei

T (k) becomes in quasiclassical approxim
tion @7,8,42#

Q ei
T ~k!5

4p

aB
2k4lnS 0.681

k2aB

keff
D , ~41!

whereaB54pe0\2/(mee
2) is the Bohr radius. Performing

the integral overk in Eq. ~40! we find

n ladder~0!5
4

3
A2p

nib
3/2e4

me
1/2~4pe0!2

L ladder,

L ladder5 lnS 0.765
4pe0

be2keff
D . ~42!

From this result, we obtain the low-density limit for the d
conductivity,
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sdc
ladder5

3

4A2p

~4pe0!2

b3/2me
1/2e2

ne

ni
L ladder

21 ~43!

which should be compared with the Spitzer formula@5#

sdc
Sp50.591

~4pe0!2

b3/2me
1/2e2

ne

ni
LSp

21 . ~44!

The Spitzer Coulomb logarithmLSp5 ln@(3/A2)4pe0 /
(be2kD)# coincides with the Coulomb logarithmL ladder in
the ladder approximation for the screened interaction po
tial up to an additive constant reflecting the different tre
ment of the screening of the Coulomb interaction. Compa
with the statically screened Born approximation, where
Brooks-Herring Coulomb logarithm appears~cf. Ref. @7#!,
the dependence of the leading logarithmic term of the vi
expansion on density and temperature has been changed
spite the correct value for the Coulomb logarithm, obtain
in the T matrix approach in leading order, the prefactor d
not coincide with the Spitzer result. To obtain the corre
prefactor one can consider higher moments of the sin
particle distribution function as will be discussed in the fo
lowing section.

After making the connection to the dc conductivity b
considering the zero-frequency limit, we want to investig
the frequency dependence of the collision frequency,
~37!. The numerical method applied to evaluate the half o
shell T matrices is given in Appendix C. For the explorato
evaluation given here, the higher-order products of the
matrices occurring in Eq.~37! have been neglected. Usin
the relative momentumpW r5(mipW e2mepW i)/(me1mi)'pW e
the partial wave decomposition of the T matrix reads

T6~pe ,pi ;q;E!5(
l 50

`

~2l 11!Tl
6~pr ,upW r1qW u;E!Pl~cosu!

~45!

with the Legendre polynomialsPl(cosu), u being the angle
betweenpW r and (pW r1qW ). Insertion of Eq.~45! yields, after
performing the integrals over the angular parts,

Ren ladder~v!5
bV0

2

3p3\
E

0

`

dp p2E
0

`

dp8 p82
12e2b\v

b\v

3dS p22p821
2mev

\ D f p
e (

l 50

`

~ l 11!

3@$p8Tl
2~p,p8;Ep

e!2pTl 11
2 ~p,p8;Ep8

e
!%

3$p8Tl
1~p8,p;Ep

e!2pTl 11
1 ~p8,p;Ep8

e
!%

1$pTl
2~p,p8;Ep8

e
!2p8Tl 11

2 ~p,p8;Ep
e!%

3$pTl
1~p8,p;Ep8

e
!2p8Tl 11

1 ~p8,p;Ep
e!%#.

~46!
n-
-
d
e

l
De-
d
s
t
e-

e
q.
-

T

With the help of thed function one integral can be per
formed, e.g., settingp825p212mev/\. In the limit of high
frequencies, an evaluation of Eq.~46! exhibits the same de
pendence onv as in the Born approximation, however, wit
a prefactor depending on density and temperature.

The evaluation of the dynamical collision frequen
n ladder(v) in the approximation Eq.~46! is shown in Fig. 10
for solar core conditions. It is compared with the treatmen
the first Born approximation. While the overall dependen
on the frequency is similar, the approximations differ in t
magnitude. Taking into account strong collisions can lead
collision frequencies up to 15% higher than the Born a
proximation if the frequency is in the vicinity of the plasm
frequency.

IV. DISCUSSION OF CONVERGENCE PROPERTIES

A. Dynamically screened binary collision approximation

To give a consistent description of the effect of collisio
in a Coulomb system, we have to combine dynamical scre
ing and strong collisions. Up to now there is no soluti
available for the dynamically screened ladder approximat
in order to calculate a frequency-dependent collision term
a one-moment approach which shall be calledn (P0)(v). An
approximation for the static limit, which interpolates b
tween weak collisions~small transfer momentaq), which
have to be screened dynamically, and strong collisions~large
q), where a ladder summation has to be performed, has b
given by Gould and DeWitt@45#. In this case, a statically
screened potential is taken as an interaction for the lad
summation, Eq.~39!, which coincides with a Boltzmann col
lision integral in the kinetic equation, as well as for th
lowest-order~Born! collision integral, the static limit of Eq.
~26!. The latter is subtracted and replaced by a dynamic
screened second-order collision integral. A similar appro
was applied to the dc conductivity of a fully ionized, nond
generate hydrogen plasma@42# where the Lenard-Balesc
collision integral, Eq.~33!, was used.

Thus we construct a dynamical collision frequency whi
interpolates between the Born approximation with respec
the dynamically screened interactionnLB(v), Eq. ~31!, valid

FIG. 10. Real part of the collision frequencyn ladderas a function
of frequencyv for a classical two-component plasma at solar co
conditions.
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for distant collisions, and the Boltzmann expressio
n ladder(v), Eq. ~37!, with respect to an effective statical po
tential, valid for close collisions. To avoid double countin
the collision frequency in the Born approximationnBorn(v),
Eq. ~26!, with respect to the same effective statical poten
has to be subtracted,

n (P0)~v!'nGD~v!5n ladder~v!2nBorn~v!1nLB~v!.
~47!

As Fig. 10 shows, the differences between the above
proximations are most pronounced in the vicinity of t
plasma frequency. The effective potential can be introdu
in the low-density limit in such a way that in the zer
frequency limit the collision frequency in the dynamical
screened Born approximation coincides with the collis
frequency in the Born approximation for the effective inte
action, see the introduction ofkeff in the preceding section.

Considering the static low-density limit, the differe
terms coincide to give identical results forn(0) in the order
n ln n. The differences occur with respect to a factor with
the argument of the logarithm, which can be rewritten a
constant~with respect ton) term in addition to lnn. The
determination of this constant demands an accurate treat
of dynamically screened binary collisions. As long as we
interested only in the term}n ln n, it is sufficient to use the
statically screened potential with the Debye screening
rameter given above. Then we haven (P0)(v)'nD(v),

nD~v!52 i
~2pb!3/2\4nie

4

3me
3/2e0

2 E d3p

~2p!3E d3q

~2p!3

3
q2

~kD
2 1q2!2

ebEp1q/2
e

2ebEp2q/2
e

DEp,q
e 2\~v1 ih!

1

DEp,q
e

52 i
gni

w1 ihE0

` y4dy

~ n̄1y2!2E2`

`

dx e2(x2y)2

3
12e24xy

xy~xy2w2 ih!
~48!

with

g5
1

24A2p5/2

e4b3/2

me
1/2e0

2
, w5

\v

4kBT
, n̄5

\2kD
2

8mekBT
.

~49!

B. Renormalization factor r „v…

The dynamically screened binary collision approximati
n (P0)(v) or its extensions obtained by including density e
fects do not give the correct result for the dynamical cond
tivity of low-density, nondegenerate plasmas. In particu
the dc conductivity resulting from Eq.~39! contains a pref-
actor 3/(4A2p)50.2992 which does not coincide with th
well-known Spitzer result 0.591@5#. The correct prefactor is
approached if higher moments are taken into account@8,13#.
In particular, the inclusion of at least second momentsPW k,1

c in
the set of quantum operators, Eq.~17!, is important because
then electron-electron collisions will contribute to the res
,

,

l

p-

d

a

ent
e

a-

-
r,

-

tivity. Furthermore, contributions due to the kinetic ener
current are taken into account. We will not repeat this de
vation but only outline the main aspects.

We restrict ourselves to higher moments of the elect
distribution function ~adiabatic approximation!, Eq. ~17!,
with c5e. In analogy to the discussion in Sec. II C, the on
contributions to the submatrix elements, Eq.~14!, in second
order, come from the generalized force-force correlat
function

^PẆ 0,l

c
;PẆ 0,m

c8 &v1 ih5\2(
pp8

pzpz8~bEp
c! l~bEp

c!m

3 lim
k→0

^vp,k
c ;vp8,k

c8 &v1 ih
(2) , ~50!

see also Eq.~23!. We introduce a renormalization facto
r (v) @46#, which relates then-moment approach of the in
verse response function to the one-moment approach

r (n21)~v!5
M (n)~0,v!

M (1)~0,v!
5

ur lm~v!u

U0 sm

sl r lm~v!
U ,

l ,m50,1,2, . . .n21 ~51!

with

sm5
~PW 0,0

e ;PW 0,m
e !

~PW 0,0
e ;PW 0,0

e !
, r lm5

^PẆ 0,l

e
;PẆ 0,m

e
&v1 ih

^PẆ 0,0

e
;PẆ 0,0

e
&v1 ih

. ~52!

In the nondegenerate limit is

sm5G~m1 5
2 !/G~ 5

2 !. ~53!

In the static limit, the ratios forr nm(0) have been well in-
vestigated, see e.g.@8#. The following ratios are obtained i
we consider the momentsP0,0

e ,P0,1
e , and P0,2

e in the low-
density limit, describing a two-component plasma,

r 00~0!51, r 11~0!521A2,

r 10~0!51, r 21~0!56111/A2,

r 20~0!52, r 22~0!5241157/A8,

where terms inA2 arise from electron-electron collisions
We obtain the renormalization factors, Eq.~51!, r (0)(0)
51, r (1)(0)50.5176,r (2)(0)50.5123. The behavior of this
series, if further moments in the zero-frequency limit a
taken into account, was investigated in@8# and found to con-
verge against the Spitzer valuer Sp(0)50.2992/0.591
50.5062. In the case of a Lorentz plasma, where only in
action between electrons and ions is considered, the re
malization factor isr L(0)50.2992/1.015950.2945. In that



i
t

he
rre

as

PRE 62 5659LONG-WAVELENGTH LIMIT OF THE DYNAMICA L . . .
case, the moment expansion converges more quickly w
r (1)(0)50.3077, r (2)(0)50.2949. Subsequently, differen
prefactors are obtained for the dc conductivity, Eq.~43!, or
the Brooks-Herring result, see@7#.

The frequency-dependent correlation functions of hig
moments can be calculated similar to the force-force co
lation function, Eq.~A6!, with different prefactors inpz and
th

r
-

pz8 . We obtain contributions from electron-ion as well
from electron-electron scattering,

^PẆ 0,l

e
;PẆ 0,m

e
&v1 ih5^PẆ 0,l

ei
;PẆ 0,m

ei
&v1 ih1^PẆ 0,l

ee
;PẆ 0,m

ee
&v1 ih .

~54!

In the Debye approximation, Eq.~48!, we find
cy-
^PẆ 0,l

ei
;PẆ 0,m

ei
&v1 ih52

i\

b
niV0

neLe
3

~2p!6

e4

e0
2E d3pW E d3qW

1

~kD
2 1q2!2

ebEp1q/2
e

2ebEp2q/2
e

DEp,q
e 2\~v1 ih!

1

DEp,q
e F S pz1

qz

2 D ~bEp1q/2
e ! l

2S pz2
qz

2 D ~bEp2q/2
e ! l GF S pz1

qz

2 D ~bEp1q/2
e !m2S pz2

qz

2 D ~bEp2q/2
e !mG

52 ig
V0meneni

b E
2`

`

dxE
0

` y4dy

~ n̄1y2!2
e2(x2y)2 12e24xy

xy~xy2w2 ih!
$x;y% lm . ~55!

The curly brackets stand for polynomials ofx andy. For l 50,1 we find

$x;y%0051,

$x;y%015$x;y%105113x21y2,

$x;y%1152110x219x412y216x2y21y4. ~56!

The contributions due to electron-electron collisions follow as

^PẆ 0,l

ee
;PẆ 0,m

ee
&v1 ih52

i\

b

4V0

~2p!9

e4

e0
2E d3pW E d3pW 8E d3qW

1

~kD
2 1q2!2

f p81q/2
e f p2q/2

e

DEp8,q
e

2DEp,q
e

eb(DE
p8,q
e

2DEp,q
e )21

\z1DEp8,q
e

2DEp,q
e F S pz1

qz

2 D ~bEp1q/2
e ! l

2S pz2
qz

2 D ~bEp2q/2
e ! l GF S pz1

qz

2 D ~bEp1q/2
e !m2S pz2

qz

2 D ~bEp2q/2
e !m

1S pz82
qz

2 D ~bEp82q/2
e

!m2S pz81
qz

2 D ~bEp81q/2
e

!mG . ~57!

The first nonvanishing contribution arises forl 5m51,

^PẆ 0,1

ee
;PẆ 0,1

ee
&v1 ih52 igA2

V0mene
2

b E
2`

`

dxE
0

` y4dy

~2n̄1y2!2
e2(x2y)2 12e24xy

xy~xy2w2 ih! H 11
19

4
x2J . ~58!

The real and imaginary part of expressions~55! and ~58! have to be considered for an investigation of the frequen
dependent renormalization factor. One integration in the imaginary part can be obtained using thed function. For the real part
a partial fraction decomposition has to be performed,

Im^PẆ 0,l

ei
;PẆ 0,m

ei
&v1 ih52g

pV0meneni

b

12e24w

w E
0

` 2y3dy

~ n̄1y2!2
e2~w/y2y!2H w

y
;yJ

lm

,

Im^PẆ 0,1

ee
;PẆ 0,1

ee
&v1 ih52gA2

pV0mene
2

b

12e24w

w E
0

` 2y3dy

~2n̄1y2!2
e2~w/y2y!2H 11

19

4 S w

y D 2J ,
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Rê PẆ 0,l

ei
;PẆ 0,m

ei
&v1 ih52g

pV0meneni

b E
2`

`

dx e2x2PE
0

`

dy
y

~ n̄1y2!2 F $x1y;y% lm

xy1y22w

1

x1y
2

$x2y;y% lm

xy2y22w

1

x2yG ,

Rê PẆ 0,1

ee
;PẆ 0,1

ee
&v1 ih52gA2

pV0mene
2

b E
2`

`

dx e2x2PE
0

`

dy
y

~2n̄1y2!2
F 11

19

4
~x1y!2

xy1y22w

1

x1y
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Calculations of the renormalization functionr (v) as a
function of frequency have been performed for a hydrog
plasma at solar core conditions (n̄50.006 05). The real and
imaginary part of the renormalization factorr (1)(v) for a
two-moment approach, where in addition toPW 0,0

e also PW 0,1
e

was included, are shown in Fig. 11. The static limit of t
real partr (1)(0)50.6166 depends on the density and co
verges slowly to the zero-density limitr Sp

(1)(0)50.5176 when
the density is decreased. In the high-frequency limit, hig
moments in the generalized linear-response approach ca
neglected, andr (v) converges to 1. The imaginary part
zero in the static as well as the high-frequency limit. In t
intermediate region the renormalization factor is a comp
quantity. Besides the electron-ion collisions also t
electron-electron collisions contribute, in contrast to the L
entz model@46#.

As a result of the above discussion of the converge
properties of the collision frequency, we obtain the followi
renormalization of the frequency-dependent conductiv
s(v) in the long-wavelength limit, Eq.~6!:

s~v!5
e0vpl

2

2 i @v1 ir ~v!n (P0)~v!#
, ~60!

wheren (P0)(v) is the collision frequency calculated in th
single moment approach, Eq.~47!, within the dynamically
screened binary collision appproximation. The renormali
tion factorr (v) takes into account corrections due to high

FIG. 11. Renormalization factorr (v) as a function of frequency
v for a classical two-component plasma at solar core condition
n

-

r
be

x
e
-

e

y

-
r

moments in the set of relevant observables, Eq.~17!. In the
zero-frequency limit~dc conductivity!, results for the statica
collision frequencyn (P0)(0) as well as for the renormaliza
tion factor r (0) are known@7,8,13,42#. The approach given
here allows the extension to finite frequencies.

V. CONCLUSIONS

In this work we presented a quantum statistical appro
to the dynamical conductivity of low-density fully-ionize
plasmas which can be given on the same level as the
conductivity, in particular in the nondegenerate case. De
tions from the ordinary Drude behavior were obtained
frequencies in the vicinity of the plasma frequency.

To formulate a quantum statistical approach, special
tention has been given to a perturbation expansion using
technique of thermodynamic Green functions. Whereas
perturbation expansion of the dielectric function or the p
larization function is divergent near the dc lim
(limv→0limk→0), the perturbation expansion of the dynam
cal local-field factor or the dynamical collision frequency
convergent nearv50 in the long-wavelength limit.

Partial summations are considered describing scree
and strong collisions. In this way, the static limit reproduc
the well known results for the dc conductivity. In particula
the summation of ladder diagrams has been performed
the dynamical collision frequency at arbitrary frequenc
which leads to expressions containing half off-shell T ma
ces.

The first-moment sum rules are fulfilled only if the com
plex character of the dynamical collision frequency is tak
into account. This has been shown analytically and num
cally. In order to get a convergent third-moment sum rule
is crucial to use a frequency-dependent relaxation time.

Furthermore, a frequency-dependent renormalization
tor was introduced which describes the influence of hig
moments of the single-particle distribution function, com
pared with the one-moment approach, within a given per
bation approximation. This way, the discrepancy betwe
ordinary linear-response theory leading, e.g., to the Zim
formula for the dc conductivity for low-density plasmas, a
kinetic theory, leading to the Spitzer result, is removed.

In this context, considering the complex dynamical co
sion frequencyn(v;T,n) as a function of the plasma densi
n and performing a virial expansion with respect ton, the
approximations given in the present paper allow us to de
mine the correct low-density behavior ofn(v;T,n), which is
obtained taking the single-particle distribution as a set
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quantum operators$Al%. The inclusion of two-particle corre
lations into the theory of dc conductivity is also of intere
see@7,12#, which leads to a virial expansion for the dynam
cal local-field factorG(kW ,v) or the dynamical collision fre-
quencyn(v) if considered as function of the plasma densi

Numerical results were shown for a fully ionized plasm
as it is found for hydrogen at solar core conditions. T
results given here should be compared with results fr
computer simulations. However, quantum statistical simu
tions for the dynamical conductivity in low-density plasm
are difficult at present.

Using our results for the dielectric function, applicatio
to various measured properties of nonideal plasmas coul
considered. E.g., it is possible to calculate the reflectivity
a plasma at a given density and temperature. Howeve
make the connection to experimentally obtained reflect
ties, one has to consider the hydrodynamical expansio
the plasma, e.g., by using density and temperature pro
from a hydrodynamical simulation code. This is beyond
scope of the present paper and will be considered in a fo
coming one. Other applications are experiments measu
the dynamical conductivity of electron-hole plasmas in e
cited semiconductors, see Ref.@47#.

The approach given in this paper relates to wea
coupled, fully ionized plasmas. Improvements are neces
for high-density, strongly degenerated plasmas. In particu
the treatment of the ionic structure factor, the inclusion
local-field factors and the introduction of an effectiv
pseudopotential in order to take into account strong co
sions have been discussed in connection with experimen
metal vapors@16,18,22#.

The treatment of partially ionized plasmas within the ge
eral approach given here has been well investigated in
static limit @8#. The frequency dependence will be the subj
of further work. Another direction of future investigatio
will be the extension of the presented approach to ther
electric properties, including frequency-dependent th
mopower and thermal conductivity. For these quantities,
generalization of the static limit, see@8,13#, to finite frequen-
cies should also be possible within our approach to
linear-response theory.
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APPENDIX A: EVALUATION OF CORRELATION
FUNCTIONS WITH THE GREEN-FUNCTION TECHNIQUE

1. First-order perturbation expansion of G„k¢ ,v…

The irreducible first-order contributions to the densi
density correlation function in Eq.~21! are given by the self-
energy and vertex type contributions
,

.
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e

^np,k
c ;np8,k

c8 &v1 ih
(irred,1)

5dcc8

\

ib

1

DEp,k
c

f p2k/2
c 2 f p1k/2

c

DEp,k
c 2\~v1 ih!

3F2dpp8(
p9

Vcc~p2p9!
1

DEp,k
c

3
f p92k/2

c
2 f p91k/2

c

DEp,k
c 2\~v1 ih!

~2DEp,k
c 2\v!

1Vcc~p2p8!
1

DEp8,k
c

f p82k/2
c

2 f p81k/2
c

DEp8,k
c

2\~v1 ih!

3~DEp,k
c 1DEp8,k

c
2\v!G . ~A1!

For the current-current correlation function the first-ord
contribution follows as

^JW k
el ;JW k

el&v1 ih
(irred,1)

52
i

2

v

\4V0
2bk4 (

pp8c
~mcec!

2~ f p1k/2
c 2 f p2k/2

c !

3Vcc~pW 2pW 8!~ f p81k/2
c

2 f p82k/2
c

!

3S 1

pz2mc~v1 ih!/~\k!
2

1

pz82mc~v1 ih!/~\k! D
2

.

~A2!

In addition to the first-order contribution of Eq.~18!,

M (irred,1)~kW ,v!5^JW k
el ;JW k

el&v1 ih
(irred,1)/@^JW k

el ;JW k
el&v1 ih

(0) #2, ~A3!

there are further reducible diagrams of first order where
interaction line connects two loops. The latter are imme
ately evaluated with the result M (red,1)(kW ,v)5
2 ibV0 /(e0v). Substituting Eq.~A2! into Eq.~A3!, we find
within the single-moment approach for the dynamical loc
field factor of a two-component system, Eq.~16!, the result

G(1)~kW ,v!5 i
e0bV0k4

v
@PRPA~kW ,v!#22^JW k

el ;JW k
el&v1 ih

(irred,1),

~A4!

see also@25# for the expression of an one-component syste
Note that the reducible first-order term is compensated by
1 in Eq. ~16!. Thus, the account of only one reducible ter
M (red,1)(kW ,v) is equivalent to an infinite partial summation
x(kW ,v) leading to the RPA result.

We add some general expressions which are of use
elaborate also higher-order perturbation expansions. Mak
use of partial integration and the Kubo identity, we can e
press the current-current correlation function as

^JW k
el ;JW k

el&v1 ih5
i

v
~JW k

el ;JW k
el!1

1

v2
^JẆ k

el ;JẆ k
el&v1 ih ~A5!
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by the Kubo scalar product, Eq.~20!, and a force-force cor-
relation function. Expressing the time derivativeJẆ k

c of the
particle current operators according to Eq.~22! and applying
further partial integrations we have

^JẆ k
c ;JẆ k

c8&z5
\2

V0
2

ecec8

mcmc8
(
pp8

pzpz8

3F ~\v!2
^vp,k

c ;vp,k8
c8 &z

~DEp,k
c 2\z!~DEp8,k

c8 2\z!

2
i

\

DEp,k
c DEp8,k

c8

DEp,k
c 2\z

~np,k
c ;np8,k

c8 !

2
DEp,k

c

DEp,k
c 2\z

~np,k
c ;vp8,k

c8 !

2\v
DEp,k

c

~DEp,k
c 2\z!~DEp8,k

c8 2\z!
~vp,k

c ;np8,k
c8 !G .

~A6!

In this expression, the first term is explicitly proportional

e6, thus the correlation function̂vp,k
c ;vp8,k

c8 &z itself can be

treated at zeroth order to evaluate^JW k
el ;JW k

el&v1 ih
(irred,2). All other

terms have to be evaluated within first- or second-order p
turbation theory. Because ofDEp,k

c 5\pzk/mc}k they do not
contribute to the second order in the long-wavelength lim
cf. @7# for the zero-frequency limit.

2. Born approximation

We will show the evaluation of the correlation functio

^vp,k
c ;vp8,k

c8 &z , Eq. ~25!, using the method of thermodynam
Green functions@38#. The Feynman diagram for the Gree
function Gvv(vm) corresponding to the correlation functio
according to Eq.~15! was shown in Fig. 1. Different approxi
mations are possible.

In the lowest approximation with respect to the interact
we treat the corresponding four-particle Green funct
Gvv(vm) as a product of four single-particle Green function
see Fig. 2. We find

^vp,k
c ;vp8,k

c8 &z
(2)

5
i

\b (
p̄lqd

eb(DEl ,q
d

2DE
p̄,k1q

c
)21

\z1DEl ,q
d 2DEp̄,k1q

c

Vcd~q!

DEl ,q
d 2DEp̄,k1q

c

3 f l 1q/2
d ~12 f l 2q/2

d ! f p̄2k/22q/2
c

3~12 f p̄1k/21q/2
c

!$dp,p̄1q/22dp,p̄2q/2%

3@Vcd~q!dcc8$dp8,p̄1q/22dp8,p̄2q/2%

1Vcd~q1k!ddc8$dp8,l 2k/22q/2

2dp8,l 1k/21q/2%1exch. contr.#. ~A7!
r-

t,

n
,

Substituting this into Eq.~27! yields in the long-wavelength
limit

nBorn~v!5
i\

V0e0vpl
2 (

pp8q,cc8

eb(DE
p8,q
c8

2DEp,q
c )21

\~v1 ih!1DEp8,q
c8 2DEp,q

c

3
1

DEp8,q
c8 2DEp,q

c F ec
2

mc
2

2
ecec8

mcmc8
G

3qz
2Vcc8

2
~q! f p81q/2

c8 ~12 f p82q/2
c8 ! f p2q/2

c

3~12 f p1q/2
c !1exch. contr. ~A8!

Performing the summation over the species leads to exp
sion ~26! in Sec. III.

3. Summation of ring diagrams

The summation of ring diagrams leads to the scree
interaction, given in Fig. 4. In the following, we shall deta
the evaluation of the first diagram only. The contribution
the Green functionGvv(vm) from this diagram can be written
down with the help of the spectral representation~28! of the
screened potential,

Gvv~vm!52dcc8dpp8(
l

f p1k/21q/2
c 2 f p2k/22q/2

c

DEp,k1q
c 2\vl

3Vcc~q!E dv̄

p

Im e21~q,v̄1 i0!

vl1vm2v̄

52dcc8dpp8@ f p1k/21q/2
c 2 f p2k/22q/2

c #Vcc~q!

3E d~\v̄!

p

Im e21~q,v̄1 i0!

DEp,k1q
c 1\vm2\v̄

3@g~DEp,k1q
c !2g~\v̄!#, ~A9!

whereg(E)5@exp(bE21)#21 is the Bose-Einstein distribu
tion function. After analytical continuationvm→v1 ih, the
imaginary part of this expression reads

Im Gvv~v1 ih!5dcc8dpp8@ f p1k/21q/2
c 2 f p2k/22q/2

c #

3@g~DEp,k1q
c !2g~DEp,k1q

c 1\v!#

3Vcc~q!Im e21~q,DEp,k1q
c /\1v1 ih!,

~A10!

which leads to a contribution to the correlation functio

^vpk
c ;vp8k

c8 &v1 ih
(2,s) according to relation~15!. Thev̄ integration

can be carried out utilizing the expression~30!. In the long-
wavelength limit we find
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lim
k→0

^vpk
c ;vp8k

c8 &v1 ih
(2,LB)

5
i

b\
dcc8 (

p̄p̄8qc̄
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2
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3
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3
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3$dp,p̄1q/22dp,p̄2q/2%$dp8,p̄1q/22dp8,p̄2q/2%. ~A11!

The evaluation of the second diagram does not contribut
the considered density order, see@7#. The third diagram has
the same structure as Eq.~A11!. It corresponds to the double
exchange term of the Born approximation, see the sec
term in Eq. ~A7!. Finally, we find the dynamical collision
frequency, Eq.~27!,

nLB~v!

5
i

\V0e0vpl
2 (

pp8qcc8

qz
2Vcc8

2
~q!

ueRPA~q,DEp8,q
c8 /\!u

3F ec
2

mc
2

1

ueRPA~q,DEp8,q
c8 /\!u

2
ecec8

mcmc8

3
1

ueRPA~q,DEp,q
c /\!uG f p1q/2

c 2 f p2q/2
c

\~v1 ih!2DEp8,q
c8 1DEp,q

c

3
f p81q/2

c8 2 f p82q/2
c8

DEp8,q
c8 2DEp,q

c
@g~DEp,q

c !2g~DEp8,q
c8 !#, ~A12!

where the term proportional toecec8 /(mcmc8) originates
from the third diagram in Fig. 4. Performing the summati
over the species leads to expression~31! in Sec. III A.

4. Summation of ladder diagrams

To describe the effect of strong collisions we perform t
summation of ladder diagrams, corresponding to Fig. 9
the long-wavelength limit the observablesvp,k

c , Eq. ~22!,
shall now be written as

vp,0
c 5

i

\ (
12

V~1,2!$dp,p2
2dp,p1

%

3dcc1
ap1 ,c1

† ap
18 ,c

18
†

ap
28 ,c

28
ap2 ,c2

, ~A13!

where
15~p1,c1;p18 ,c18!

and
to

nd

n

V~1,2!5Vc1c
18
~ upW 22pW 1u!dc1c2

dc18c28
dp22p1 ;p

182p
28
.

With Kp(1)5dp,p1
for the lowest moment, the analytica

expression reads

Gvv~vm!5 (
1234,vl

V~1,2!@Kp~2!2Kp~1!#

3G2~1,3;vl1vm!V~3,4!@Kp8~4!2Kp8~3!#

3G2~4,2;vl!. ~A14!

In the low-density limit wheref p
c!1, the two-particle

propagator is given in terms of the solution of the tw
particle Schro¨dinger equation, see Sec. III B 1, as

G2~1,2;vl!5(
nP

cnP* ~1!cnP~2!

vl2EnP
. ~A15!

Performing in Eq.~A14! the summation overvl , the Bose
distribution function occurs. After some straightforward ca
culations the result~36! is obtained.

We also can express the dynamical collision frequency
terms of the T matrix. We use the operator form and give
representation with respect to the two-particle basis at
end. With the relation

G2~z!5E
2`

` dv

p

Im G2~v1 ih!

z2v
~A16!

we find

Gvv~vm!5E
2`

` dv

p E
2`

` dv8

p
@V,Kp#Im G2~v1 ih!

3@V,Kp8#Im G2~v81 ih!F~vm ,v,v8!,

~A17!

with

F~vm ,v,v8!5(
vl

1

vl1vm2v

1

vl2v8

5
eb(v2v8)21

v81vm2v
gei~v!@11gei~v8!#.

~A18!

Now we utilize the optical theorem
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Im G2~v1 ih!5
2 ih

~v2H1 ih!~v2H2 ih!

5
1

v2H1 ih
~v2H01 ih!

3
2 ih

~v2H01 ih!~v2H02 ih!

3~v2H02 ih!
1

v2H2 ih

5G 2
1~v!@G 0

1~v!#21Im G 0
1~v!

3@G 0
2~v!#21G 2

2~v!

5V21T1~v!Im G 0
1~v!T2~v!V21,

~A19!

where relations likeVG 2
6(v)5T6(v)G 0

6(v) were used. In-
sertion gives

Gvv~vm!5E
2`

` dv

p E
2`

` dv8

p
Im G 0

1~v!T2~v!

3FKp8 ,
1

VGT2~v8!Im G 0
1~v8!T1~v8!

3FKp ,
1

VGT1~v!F~vm ,v,v8!. ~A20!

With T6(v)5V1VG 0
6(v)T6(v)5V1T6(v)G 0

6(v)V,
we get relations such as (1/V)T2(v8)51
1G 0

2(v8)T2(v8), so that

T2~v!FKp8 ,
1

VGT2~v8!

5T2~v!Kp82Kp8T
2~v8!

1T2~v!@Kp8G 0
2~v8!2G 0

2~v!Kp8#T
2~v8!.

~A21!

Insertion in Eq.~A20! and representing the operators wi
respect to a two-particle basis leads to the result~37!.

APPENDIX B: HIGH-FREQUENCY BEHAVIOR
OF DYNAMICAL CONDUCTIVITY

In this appendix we give details on the determination
the high-frequency behaviorv→` of the dynamical colli-
sion frequency in dynamical screening and in ladder appr
mation. We start with dynamical screening as given in E
~32!. Since the real part of the RPA dielectric function
unity in this limit, we obtain Ime21(q,v)'2Im e(q,v).
The limiting behavior is the same as for the Born appro
mation, Eq.~26!, and given by

Ren~v!}
1

vE0

`

dq q2 Im e~q,v! ~B1!
f

i-
.

-

if the q dependence of the Coulomb potential is inserted a
the static structure factor is assumed to beSi(q)51.

In the degenerate limit@u51/(bEF)!1#, the imaginary
part of the dielectric function is@48#

lim
u→0

Im eRPA~q,v!

5H A\v/~EFz3! : ~u6z!2,1

A~12~u2z!2!/z3 : ~u2z!2,1,~u1z!2

0 : 1,~u2z!2,

~B2!

using the reduced variablesu5mev/(\kFq),z5q/(2kF),A
5(3p/128)(\vpl /EF)2. For sufficiently large values ofv,
(u1z)2 is always larger than unity. Applying the transfo
mation q5kFk, we are able to perform theq integration in
Eq. ~B1!,

E
0

`

dqq2 Im e~q,v!}E
a21

a11dk

k F12S mev

\kF
2k

2
k

2D 2G
5S 11

mev

\kF
2 D @ ln~a11!

2 ln~a21!#2a,

a5A11
2mev

\kF
2

. ~B3!

The asymptotic form of this expression in the high-frequen
limit is proportional tov21/2, corresponding to a power law
v23/2 for Ren(v).

In the nondegenerate limit (1/u!1), the imaginary part of
the dielectric function is@48#

lim
1/u→0

Im eRPA~q,v!5
px0

2

8z3
uebm@e2(u2z)2/u2e2(u1z)2/u#.

~B4!

The integration with respect toq, carried out analytically,
results in a collision frequency proportional to a modifi
Bessel function@49#

Ren~v!}
1

v
sinhS b\v

2 DK0S b\v

2 D . ~B5!

The high-frequency limit @49# K0(z);Ap/(2z)e2z
„1

21/(8z)1 . . . … gives a dependence ofv23/2 again.
Thus, the asymptotic form of the real part of the collisio

frequency is given by Ren(v)}v23/2 in the degenerate a
well as the nondegenerate limit. As a consequence, havin
mind that the asymptotic expansion of the dielectric funct
reads e(v)512vpl

2 /v21 ivpl
2 n(v)/v310(v24), we get

Im e(v)}v29/2.
The absorption coefficienta(v) for radiation and the

imaginary part of the dielectric function are connected vi
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a~v!5
v

cn~v!
lim
q→0

Im e~q,v!, ~B6!

wherec is the speed of light andn(v) the index of refrac-
tion. Using this relation, the asymptotic scaling of the ima
nary part of the dielectric function compares to known
sults for the frequency dependence of the absorp
coefficient of thermal bremsstrahlung at high temperatu
@50#.

The frequency dependence of the dynamical collision
quency in the ladder approximation can be determined
exploiting the known off-shell behavior of the Coulomb
matrix @51#. Inserting the analytic expression of the half-o
shell T matrix into Eq.~37! results again in a frequenc
dependence according tov23/2.

APPENDIX C: NUMERICAL DETERMINATION OF THE
HALF-OFF-SHELL T MATRIX

The Lippmann-Schwinger-equation~38! for the T matrix
in partial wave expansion, Eq.~45!, is given by

Tl~k,k8;z!5Vl~k,k8!1
1

2p2E0

`

dq q2
Vl~k,q!Tl~q,k8;z!

z2q2
,

~C1!

whereVl represents the expanded potential. Following@52#
we introduce the auxiliary integral equation
re

, U

p-

.J.

m

s

f

d

-
-
n
s

-
y

G l~p,k;k2!5Vl~p,k!

1
1

2p2E0

`

dq q2Al~p,q;k2!G l~q,k;k2!,

~C2!

with the kernel

Al~p,q;k2!5
V~p,q!2V~p,k!g l~k,q!

k22q2
~C3!

which is nonsingular in contrast to the one in Eq.~C1!. The
function g l(k,q) is subject to the conditiong l(k,k)51 and
can be chosen to optimize the numerical expense. The i
gral equation~C2! can be solved by standard techniques
Fredholm equations such as the Nystrom method. The
shell T matrix is obtained from its solution according to

Tl~k,k;k2!5
G l~k,k;k2!

12
1

2p2E0

`

dq q2
g l~k,q!G l~q,k;k2!

k22q21 i e
~C4!

and the half-off-shell T matrix using the relation

Tl~p,k;k2!5
G l~p,k;k2!

G l~k,k;k2!
Tl~k,k;k2!. ~C5!
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