PHYSICAL REVIEW E VOLUME 62, NUMBER 4 OCTOBER 2000

Long-wavelength limit of the dynamical local-field factor and dynamical conductivity
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A systematic approach to the optical conductivity is given within a dielectric function formalism. The
response function as well as the dynamical local-field faGek,») of an electron-ion plasma can be ex-
pressed in terms of determinants of equilibrium correlation functions which allow for a perturbative treatment.
The dynamical collision frequenay(w) = —i wS,G(O,w)/(u for fully ionized weakly coupled plasmas is evalu-
ated in the low-density limit. A renormalization function is given to describe the effects of higher moments of
the distribution function, thus the Spitzer formula is reproduced in the static limit. The existence of the third
moment sum rule can be shown analytically. Numerical calculations are presented for the dynamical conduc-
tivity of hydrogen plasmas at solar core conditions.

PACS numbeps): 52.25.Mq, 05.30.Fk, 71.45.Gm

[. INTRODUCTION generalized linear-response theory are of the type of force-
force correlation functions and seem to be more appropriate
For a charged particle system, the longitudinal dielectricfor applying perturbation expansions for the dc conductivity.
function e(k, ) contains important information about differ- As a result, rigorous virial expansions have been given for
ent physical properties. It can be directly related to the wavéhe low-density limit[7,12]. A recent review considering
vector () and frequency ¢) dependent conductivity 9eneraltransport processes in dense plasmas is fodaglin
o(K,») describing transport phenomena vigK,w)=1 Qn the other ha_no_l, the dlelec_trlc function of a charged-
L2 . . . particle system at finite frequencies can be obtained from a
+io(k,w)/(eqw). In particular, optical properties such as

the refraction index, absorption coefficient, reflectivity, andperturbatmn expansion of th.e.Kubo formulz4), see also
bremsstrahlung are obtained considering  the Iong:[15]' The dynamical conductivity of hot dense plasmas was

wavelength limit of the dielectric functioa(0,w) or the dy- ||jvest|gated by dlfferen_t groups, SEEﬁ_l.a’ startmg_ from a
namical conductivityr(0,0) = o(w), respectively. Z|man. formula[.lg] which was generqllzed for f|n|tg fre-

With the advent of high-intensity femtosecond lasers itdUeNCies- Experimental dgta for metallic vapors at hlgh den-
became feasible to produce nonideal plasmas at high densiies[20], for a recent review seg21], or for the electrical
ties and temperatures in the laboratory. The reflectivity andesistivity of dense, laser pulse heated aluminig] are
opacity of such laser-produced plasmas have been detefescribed successfully.

mined in a number of experiments, gde-4]. However, there exist parameter values corresponding to
The static limit of the frequency-dependent conductivitynondegenerate, weakly nonideal plasmas where the dc limit
is related to the dc conductivity g, of the dynamical conductivity should be described by the
R Spitzer formula. The objective of this paper is to give a more
ogc=lim lim iegw[1—€e(k,w)]. (1)  general approach which refers also to fully ionized plasmas
®—0 k=0 at low densities and high temperatures where the Spitzer for-

- mula and its improvements are applicable. For this case, ex-

Several approaches are known that evalugteande(k,w),  pressions will be given for the dynamical conductivity. A
leading to results which do not always fulfill the relatiti).  renormalization factor is introduced to describe the effect of
Our main interest is to show which approximations have tohigher moments of the distribution function on the optical
be performed in evaluating(k,w) for weakly coupled plas- conductivity.
mas at arbitrary degeneracy so that standard results for We follow the general treatmef23-2§ given recently
are also reproduced. which bridges between the dielectric function and the dc

The dc conductivity of a fully ionized plasma in the non- conductivity. The main ingredient of the generalized linear-
degenerate, weak-coupling limit is given by the Spitzer for-response theorj27] is a set of relevant observables which
mula [5]. To include higher-density effects, a systematicwas introduced in correspondence to moments of the distri-
many-particle treatment can be appli@éd. Using a general- bution function. In the present paper we elaborate the appli-
ized version of the linear-response thepry8|, the connec- cation of this approach to the dynamical response of a
tion to methods derived from kinetic equatid@s9—11 can  charged-particle system. Our objective is to show the level of
easily be shown within the binary collision approximation. In approximation for the dynamical conductivity which is nec-
contrast to the Kubo formula, expressions occurring in thaessary in order to reproduce advanced treatments of the dc
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conductivity, such as dynamical screening and inclusion ofpirical approach to include scattering processes between par-
strong collisions, for fully ionized plasmas in the limit of ticles and describe the optical conductivity is the frequently

small coupling parameters. used Drude modefsee, e.g., Ref.14]) a(w)=€0w§|/(—iw

In the following, we consider a nonrelativistic charged- + 1) with a relaxation timer and the plasma frequency
particle system with components (massm., chargee, wplz[gcegnc/(eomc)]lf%
spins;) described by the Hamiltonian A more systematic approach is possible by introducing a

dynamical local-field factos(k, ) [30] according to

H=> Eta’_ .a ) ) A )
pe P POPe TI(K, ) = TRPAK, 0)/[ 1+ G(K, 0) TTRPAK, w)/(€gk?)].

+% > Vcc’(q)agfq,ca;/+q,c'ap/,c'ap,c- (20  Different approximative methods to Qetermiﬁfélz,w) have
pp’g,cc’ been developed such as perturbation expansjda§ the

parametrization of the dielectric function via sum rules

. . [32,33, or a time-dependent mean-field thef8#]|. A quan-
=€clor/ (€0f200°) theTCoqumb interactiort)o the normal- -y, savistical approach to the dynamical local-field factors
ization volume, and, . denotes the creation operator of a 4 finjte temperatures and arbitrary degeneracy was given by
particle of component with momentum#p. In particular,  the authors irf25]. Using the relation

we will restrict ourselves to a two-componetitydrogen

plasma consisting of electrons and ioipsotons so thatc R 1 1

=e,i. The spin variable will be included in the indexand G(k,w)= €k ————— ————|,

spin summations are performed in the final expressions. As M(kw) Tk o)

an example, fully ionized hydrogen plasma is considered. ,nq performing a perturbation expansion for the inverse of

The paper is organized as follows: In Sec. Il general ex- o . 10 .
pressions are given for the dynamical local-field factor an he polarization functionll™ *(k,«), which goes beyond

the dynamical collision frequency in terms of equilibrium irst-order local-field corrections in order to include colli-

correlation functions, which allow for a perturbative treat- sions, this appro_aph allows the direct connection to the

ment. In Sec. Il we consider the long-wavelength limit. Go- theory of conductivity. .

ing beyond the Born approximation, partial summations ar(-f. Qon5|der|ng the Iocgl-fleld factor In the long-wavelength
e : - Jimit and taking into account the RPA result

performed describing dynamical screening and strong colli- RPA 2 9, o ) )

sions so that results for the dynamical conductivity matcHiMi—olI""(k, ) = egwpk?/ w?, we find a Drude-like ex-

with results for the dc conductivity. Numerical results arePression for the optical conductivity

presented for hydrogen plasmas at solar core conditions and 5

sum rules are checked. In Sec. IV the convergence of the B €oWp

different collision terms and the inclusion of higher moments o(w)= —jw[1+ w2 ReG(0,0)/ 0?]+ ()

of the distribution function are discussed. Pl ’

E;=A°p%/(2m;) is the kinetic energy, V. (q)

®

Eowé
Il. LINEAR-RESPONSE APPROACH FOR THE = Te+inw)] (6)
DIELECTRIC FUNCTION
with a frequency-dependent relaxation time (o)

=w§| ImG(0,w)/ w. Alternatively, we can introduce a com-
The calculation of the longitudinal dielectric function plex dynamical collision frequency

A. Dynamical local-field factor and Drude formula

R 1 . wé
e(k,w)=1—?ﬂ(k.w) ) v(w)=—i—G(0,w). (7)

€p ®

for a charged fermion system, E(R), in the lowest order The dc conductivity should result in the limi—O0,
with respect to the interaction gives the random-phase ap- 5
proximation (RPA) [28,29 for the polarization function €oWy €ow

T1(K,w), O4c= ol,iTo =ilim G0 (8

V((,l)) w—0
Before discussing the perturbation expansion of these ex-
pressions, we point out that the consistency of a given ap-
proximation can be checked by the inspection of certain sum

with  AES,=ES, .~ ES_,=h%K-p/m,. Here, f5 rUIes
=[exp(ﬁE,‘;—B,uc)+1]‘l denotes the Fermi distribution w0
function, B=1/(kgT) the inverse temperature, and. the f
chemical potential of species The limit »—0 has to be
taken after the thermodynamic limit. ) -
Taking into account interaction processes, improvement§ee, €.9-[14]. We will focus on thef sum rule S{™)(K)

of the RPA have been discussed extensively. A simple em=— 7, the conductivity sum rules{")(k)=w?, and the

> 1 fosk2— fp—k2
ITRPAK, w) = o e’ c —, (4)
opc "AEp —fi(w+in)

do - i JRNg
—o"Iim e“1(K,w+i0)=S"(k), 9)

—o0
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third-moment sum rul&; (k). The latter has to be a finite
value which is related to quantities such as the mean kineti

energy. An important point is that the third-moment sum rule
is not convergent for the empirical Drude model approxima-

tion, which is obtained from Eq6) if taking the relaxation
time 7 as independent of frequency.

B. Linear-response theory

Within linear-response theory the longitudinal and trans-
verse part of the dielectric function can be expressed by equ
librium correlation functions. Both expressions become iden
tical [14] in the long-wavelength limit in which we are

interested. Having this in mind, the relations relevant for the

longitudinal dielectric function are presented.

A generalized version of the linear-response theory ha
been given recentl{27] leading to the following expression
for the response functiof23]:

2 1

K,w)=i 10
X(K,w)=1BQ OwM(k ) (10
Mim(K @)= =10 (A1;Am) = (A AR + (A A iy
The equilibrium correlation functions are
! >
(A; B)_B f drTrje PHTAL sNeA(—ifi7)BT
B * dw' 1I
=3 7@Tw_mgABT(w +in),
<A;B>z=f dte?'(A();B)
0
T L G +in), (1)
—Im in)),
,3 e T -0 o ABTL 7
and A=(i/#)[H,A], Z=Tr e PHTEZcrNe As already

mentioned above, the limip—0 in z=w+in has to be
taken after the thermodynamic limit. The thermodynamic
Green functions are obtained from the analytical continua-
tion of G ogt(w,). They are calculated below at the Matsub-
ara frequenciea)M using perturbation theory represented by
diagram techniques.

From the response functigr(lz,w), the polarization func-
tion can be deduced by II(k,w)= (K )/[1
+X(IZ w)/(eokz)] and subsequently the dynamical local-
field factorsG(k w) are directly related to the inverse re-
sponse funct|0rM(k w) according to
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with the inverse response function
¢ M om(K, )
, W
M (K,w)=|M om T
Mio(K,®) MK, )
11

The matrix eIementMij(E,w) of the determinants are given
by equilibrium correlation functions of an appropriately cho-
sen set of quantum operatofA;,A,, ... A, ...} which
f:lllows us to represent the electrical current den5|ty operator

~~C

—hpng k (12

as a linear combination therem‘
?/\hgner density. We have
(2 Am,

The elements of the submatrM|m(IZ,w) are given by ma-
trix operations according to

1— .
Ap_k2c8p+kize IS the

Mom(K, ®) = Mio(K,@)=(A;;J8). (13

0 (A ADwtig

+ .
<Ai ;Am>w+i7] <AI ;Aj>w+i7y

/ [CAGAD o) (14

G(K,w)=— Y M (K, w) —

K2e——————+1
BQ IRPAK, w)

(16)

To evaluate the general expressidi) for M(k,w) the
set of quantum operatof#\;} needs to be specified. They
define the rank of the matrices in E(l1). Following the
framework known from standard transport thefBy such as
the Chapman-Enskd®] or the Grad methofi10] for the dc
conductivity, the set of quantum operatgss} is chosen as
moments of the single-particle distribution function of each
component of the systefi8,23] taking

{Al}ﬁﬁﬁ,f; fip(BES)™NS . 17

The first momentsr{=0;c=e,i) are the momentum opera-
tors of the corresponding species. The electrical current-
density operatof12) can easily be expressed as a linear com-
bination of these observables. The second momentsl()
are relevant in connection with the thermopower and thermal
conductivity since they describe the current operators of the
kinetic energy, sefg].

The approach by Eq$10)—(14) and(17) has been inves-

tigated in [23,24 with the current-density operatoﬁﬁ
=€ *eol(me o) of the electron system as the only consid-
ered relevant observable. The correlation functions were

evaluated in the Born approximation. Before discussing the
more general case in Sec. IV, we consider the first-moment
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approach given by{A}—{J¢,Ji} in Sec. Ill. Within this ~commutator relation of the Hamiltonian with the current op-
choice of relevant observables, we obtain according to Ecgrators, Eq(12), we arrive at expressions containing
(14) the following expression for the ratio of determinants in ] i
- . i [
M(k’w)’ Eq (11) n([:),k:f_L[Hing,k]: - Hﬁpzng,k+vg,k1
C
M ;5(K, @) ! (18
JNK @)= = ==
<‘]E|;‘]El>w+i7] U;,k:% 2 Vcd(Q){é_p q/l2™ ,p+q/2}
p’apd
Xal al a ay
1 (e e+ jel jel p—ki2—q/i2c%p’ +q/2,d%p’ —a/2,d%p+k/2+q/2,c
_ i . . _
(Jel J ) (1)( ’ k) < ’ k>w+|77 (22)
(Gehgeh i3l geh Due to the potential-dependent paff, higher-order corre-
SRSV k/Av Bhe YOI Y (19)  lation functions will occur.
(I3 iy Let us now analyze the perturbation expansion of the ex-

pression(19) with respect to the coupling parametgr[36].
The first relation, which is obtained after partial integra- |n |owest order with respect te? [37] we haveM (0)(k w)
o e e ot ez IO )] nd subsoquents®(0) 0
since the last term in Eq16) contributes in next order only
inverse response functidvi JJ(k,w) can be expanded in per-
turbation theory avoiding singularities at zero wave vectorNotice that contributions in the lowest order arise frdﬁl'
appearing otherwise already in the lowest order. which are produced from the kinetic part ngyk, Eqg. (22),
It can be shown by formal manipulatioi85] that the  not from the interaction palttC
results for the physical quantities given above are indepen- |n the next order of per’[urba’[lon expansion, additional
dent of the choice made for the set of quantum operatorgiagrams have to be considered adding one interaction line.
{A} as long as the correlation functions are evaluated rigorThe corresponding dynamical local-field factor which is re-
ously (and the limitp— 0 is performed in the final expres- lated to quantum effects is given in Appendix A 1. It does
sions. However, finite-order perturbation theory will lead to not contribute to optical conductivities in the long-
different results, depending on the choice of quantum operawavelength limitk— 0. Expanding the last brackets in Eq.
tors {A}. In this context, the relation to the Kubo formula (A2) in this limit shows that the first-order expression-ik?

[6,14] has been discussed before in earlier papeya3]. [24,26 and lim,_,oM (K, ) =0.
In order to allow for the inclusion of collisions which are
C. Perturbation expansion of correlation functions of importance to obtain optical conductivities, we consider

Having specified the set of quantum operatftg} as the second order of perturbation eXpanMﬁ)(E,w)- Some
{3e,31, we have to evaluate equilibrium correlation func- 9€n€ral expressions are given in Appendix A 1. Here we fo-
tions, Eq.(15), in order to find general expressions for the cus on the long-wavelength limit, where the local-field factor

. . - G(0,0w), Eq. (16), vanishes up to first order as discussed
dynamical local-field factoG(k,«), Eq. (16), and the re- above. According to the long-wavelength limit of E@\6)

lated quantitiES((E,w),H(E,w),U(Iﬁ,w)- the force-force correlation function in E¢L9),
The correlation function J¢;J¢) contained in §';J¢!
can be related to the commutator of position operator and - Sel. "eI €.6¢r . c ¢
operator of linear momentuief. [ 7]). With the particle den- J0:90) wtin="3 2 pzpzllm<vp,k;vpr’k>w+i7y
. . . QO pp cc’ mcmcr k—0
sity n. we find the exact relations 23

2

2

eCnC
M€ Jel. eI Jel. eI
lation funcﬂons(.] ; ),,m,?,(.] +Jk) w+i, also being of the
The current-current correlation function occurring in the in- ordere®. This can be shown by diagram expansions or, more

verse response functiav ;,(K,»), Egs.(18) or (19), reads  directly, making use of partial integration and the fact that
due to the Kubo |dent|ty/§ A)=i([A,A])/(#B)=0 so that

2 P.PA(NG NS, k>w+m (3838 ,= (1/2)(J JS'}Z, which is at least of the ordes®.

Mecr pp! In contrast, the correlation functiofdg’;J§),+i, is of the
(21)  order e?, cf. the RPA result for the polarization function

L IIRPA0, w)—eow k?/w?. All together, the last contribution
The wave vectok=Kke, is taken in thez direction and the jn Eq (19 is Of higher order €'9 compared with

system is considered to be isotropic. Further COYI’9|8IIOI"IQ
functions arise where the particle current operatilfzrsare

w2
OpI

BQ (20) is of the ordere®. The last term |n Eq(19) contains corre-

(3:3¢) = 6,0 and (J¢';J¢h=

h? e.e.
>a)+|77 Qz

(Je: 3

Je'>w+m Therefore, the second-order contribution to
N the dynamical local-field factor in the long-wavelength limit
replaced by time derivative§‘forces”) Ji. Applying the s
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1+q/2 I'+q'/2
T TS
V@ T G| e
o e TERT
{BP,p-qIZ _BP,p+q/2 h {SP’,p'-q'/z _SP',p’ﬂr/z }
P+k/24q12 P+k/24q2

FIG. 1. Representation of the Green functi@gp(w,) by Feyn-
man diagrams.

FIG. 2. Green functiorg,,(w,) in the Born approximation.

(2) i@ oy PO el S () . .
G(0w) =i — v w)=io—7(J5;J0)u+iny: cannot be considered as a correct expression for the dc con-
@pl €0@pl (24) ductivity of a Coulomb system, EQ), for different reasons:
Due to the long-range character of the Coulomb interaction,
the Born approximation is divergent. Screening has to be
1. FREQUENCY-DEPENDENT CONDUCTIVITY taken into account. Strong collisions may occur so that a
T-matrix approach is necessary. This way, the correct Cou-
lomb logarithm for the low-density limit will be obtained
performing the corresponding partial summations. Further-
more, to reproduce the correct prefactor of the Spitzer for-

In order to calculate the dynamical collision frequency,
see Eqgs(23) and(24), the correlation function

c ..c )
<”D,k'”p’,k>w+'7/ mula, which is valid in the nondegenerate, low-density limit,
1 higher moments of the distribution function, E4.7), need
== > Vea(D)Verg(q)) to be taken into account.
h2 d4d'qq' 1l "pp’ These arguments, well known from the evaluation of the
dc conductivity of a plasma, s¢&], apply also to the more
X{0pp-ar2™ Sppraizt general case of the dynamical conductivity. We reconsider
X{ 851 o qri2— O pr +q12} the evaluation of
i T 2
X{A o gr2. @+ q/2,dd —g/2.d Bt €cec . '
p-ki2—q/2,c+a/2,03 —q v(w)~ — ——— PP im (v ivp Dwtiyg
X a= _al aT Qofowm pp’,cc’ mcmcr k—0 '
p+ki2+q/2,c1 % —k/2—q'/2,c" %N’ +q’/2,d’ 27
>< '’ ! 7/ ! ! i 2 . . . . .
A1 —qir2.0'p +iz+q' 12,0 ot (25 beyond Born approximation by including higher-order terms

of the perturbation expansion. In particular, we introduce the
dynamically screened interaction by summation over ring
diagrams, and consider the Born approximation with respect
to the screened interaction. Furthermore, performing the par-
tial summation over the ladder diagrams, the T-matrix is in-
troduced describing binary collisions in the correct way. To
include the effects of higher densities, further diagrams can
be included such as self-energy corrections and three-vertex

will be evaluated using the relatid5) to the corresponding
four-particle Green functiong,,(w,) (the single-particle
variables are omitted see Fig. 1. Details are presented in
Appendixes A2—-A4.

In the lowest approximation with respect to the interaction
(Born approximation, see Fig. 2 and Appendix A e find
according to Eq(A8) the complex dynamical collision fre-

uenc , :
d y terms. However, in the present work we consider only the
i e low-density limit of the dynamical conductivity, where self-
4% eBE,, —AE; ) q :
Born  \ i Pa_ Pa 2y,2 energy corrections and three-vertex terms can be dropped, cf.
v (w)_l 2 i qzVei(q) . . .
Qonu e AE'p, q—AES a the arguments given in the case of the dc conductivify’in
" fip, rqa(1— fip, _q,z)fS_q,z(l— fosq2) A. Dynamical screening
h(w+i 77)+AE'p,'q—AES’q ' 1. Summation of ring diagrams
(26) Comparing with the simple Born approximation, ring dia-

grams are produced replacing a simple loop by a chain of

The reduced mas;flzmgle mi‘l follows from the sum loops, see Fig. 3. More generally, the summation of all loop
over the species wite,= —e;=e, n,=n;=n. The factor 4 diagrams is included by introducing the dynamically
is due to the summation over spin variabless s;=1/2. For  screened potentia‘i/ic,(q,z)=Vcc,(q)/e(q,z), which will
AE; , see Eq.(4). Due to momentum conservation there is be represented by a wavy line. The screened Born approxi-
no contribution from the interactions between particles of themation is given by the diagrams fok,,(w,) shown in Fig.
same component in this one-moment approach. 4, see als¢7]. When evaluating the Green function, which is

The corresponding dc conductivity, E@), is applicable detailed in Appendix A 3, we use the spectral representation
to short-range interactions. Howevexﬁg’“= eowgllvB"m(O) of the screened potential, see, 438],
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L T S

FIG. 4. Contributions to the Green functigh,(w,) in a dy-
namically screened Born approximation.

In adiabatic approximation linm§; /m¢) —¢°, the electrons
are considered to scatter from ions at positi&s We find
the following expression for the dynamical collision fre-

FIG. 3. Example of a contribution to the Green function quUency:

Gyo(w,) in a dynamically screened approximation.

. va
s do Im Eil(q,w'i‘iO) VLB(w)Z—iZﬁnI e|(q)Si(eq) zqg
Vccr(qywv):Vcc’(Q)+Vcc’(q) T w—w, . MeNe “pq |ERpA’e(q,AEp’q/ﬁ)|
28
8 g+q/2_ fs—qlz 1
Using the relation(3), the inverse dielectric function can be AE] —fi(w+in) AE]
expressed by the polarization function ' , '
ImII(g,w+i0 . eniQdg (= 1
im e (g i0)— mE@e i) g S0 [ g 6V (@)5(0) T erdaal0.0)
00| e(q, )| 67 e neme /0 @
— erpac(0.0)], (32

Since we are interested in the low-density limit we can take
the polarization function and the dielectric function in the
RPA limit, Eq. (4). As well known[14], the dynamical struc- where the ion distribution is taken into account by the ionic
ture factor corresponding to this RPA dielectric function de-strycture faCtorSi(q)=Z,-|exr{id-(lij—§|)]/(niﬂo) on the
scribes excitations in a two-component plasma including atatic level, replacing the ionic contribution to the dielectric
slightly renormalized electron plasma frequency and an ionfynction. The remainingrpa o(q, ) is determined only by
acoustic plasma mode. Utilizing the electron component of the plasma. Evaluating this adia-
batic expression for a classical plasimondegenerate cgse
we find an expression as given before by Beka$i| whereas
SIMI%°A(q, 0 +i0) the zero-temperature limit for a simple metal was considered
€od by Hopfield[40]. Splitting the dynamical collision frequency
into real and imaginary parts leads to a Drude-like expres-
= — 72 Ve DS, qo— 5 2] S(AES —fiw), (300  sion (6) for the electrical conductivity with a frequency-
pe dependent relaxation time for a dynamically screened Cou-
lomb potential.
In the zero-frequency limit, the imaginary part of the col-
lision frequency vanishes. The inverse relaxation time, de-
rived from Eq.(31),

the dynamical collision frequency, ER7), in the screened
Born approximation is obtained, see Appendix A3,

A < PAE, MBS g
LB/, \_:
e =g 2

2\ /2
] 9zVei(q)
pp’q AED’,Q_AESVq

— LBO
o9 =00

% fg—qlz(l_ fg+q/2)flp'l+q/2(1_ flp'—qlz)
h(w+in)+AEy, ;—AES, h ,  Va) .

Qonp pp'q qz|6RPA(QaAES,q)|2 Praz

1

Me| €rpa(0, AE}, /)] X (115, ) a1 T )

2
. (31

1

N X S(AE,, ;—AEp ), (33
m;| €rpa(Q,AEp o/70)]

coincides with the well-known Lenard-Balescu collision in-
The expressiori31) has the same structure as the Born ap-tegral [41] and has been derived before within the linear-
proximation, Eq.(26), except the bare Coulomb interaction response theory ifi7,42].
is screened by the full RPA expression of the dielectric func- The Ziman formula[19] for the dc conductivity can be
tion. found from the adiabatic limit, Eq.32),
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0.3

0.2

Re v(w) [Ry]

— dynamical screening
e—e dynamical screening, electrons only
—— statical screening

0.1

wul vl ol
0.1 1 10

Ll L
0.01

frequency @ [units of ® pl]

FIG. 5. Real part of the dynamical collision frequendy as a
function of frequencyw for a classical electron and a two-
component plasma at solar core conditions in comparison to th
statically screened Born approximation.
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0.01
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o Im &(0,0) [Ry]
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— dynamical screening
—— statical screening
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FIG. 6. Dynamical conductivity'® as a function of frequency

g for a classical two-component plasma at solar core conditions in
comparison to the statically screened Born approximation.

the collision frequency, Eq.31), is compared with the col-

2
O.gicman:ﬂ lision frequency of the statically screened Born approxima-
S () tion using (q,0)=1+ «3/q? in Eq. (31). From Fig. 5 we
32322 5 1 deduce that the dynamical collision frequency coincides with
:1277 h e ng J“d ¢ Vei(@)Si(a) a static description at small frequencies. The high-frequency
Q2m?n, 0 q |€rpac(9,0)|2 a2 behavior is also in agreement with the static treatment. In

between, a pronounced effect is seen due to the inclusion of
dynamical screening. In particular, a peak appears due to the
] , ) ] o _excitation of plasmons, cf. Ref§40,44].

The inclusion of ion dynamics considering the dynamical The corresponding calculations for the imaginary part of
ionic structure factor is straightforward and coincides withine dielectric function, Eq(6), are shown in Fig. 6. The
the expressiori33) for the two-component system if the re- giatic evaluation almost coincides with the Drude result,
lation between the dynamic structure factor and the dielectrigynere the collision frequency is approximated by the zero-
function is taken into account. In this case, the dc conductiVfrequency relaxation time. Differences are obtained by taking
ity is influenced by dynamical screening, and the frequencynig account dynamical screening. The inset shows the de-
argument of the dielectric function is an energy-dependenfjation when using a statically screened approximation in
variable. The connection between the Ziman formula and thgomparison to the dynamical evaluation. Of particular inter-
Lenard-Balescu result was also in investigated4a|. est is the plasmon peak occurring in the response function

With Eq. (31) and its adiabatic limit, Eq.32), we derived 1 . . -
a generalized Drude formul®) for the optical conductivity. Im e™“(k, ) and its dispersion as shown in Fig. 7, see also

This result applies to the low-density limit. The dynamical
conductivity from the first-moment approach in screened
Born approximation, Eq(32), has also been applied to
higher densities, sgd6-18,20,22 However, instead of the
dynamically screened Coulomb potential a pseudopotentia
has been considered. The ionic structure factor was evaluate
by standard methods from the theory of liquids. Density ef- 5 »
fects were included into the electronic part of the dielectric =
function describing the screening of the electron-ion interac- g
tion taking into account local-field factors.

(34

20—

-60

— dynamical screening
— - statical screening
-+ Drude model

2. Numerical results

The evaluation of the complex collision frequency, Eq. %

(31), has been performed for a hydrogen plasma at the con P N T T R A T R B B
ditons of the solar core, i.e.T=96.15 Ry, ne=n;=n 093 056 057 0% 09 oL Loz 1o o
=8.9ag3. This is a weakly coupled plasmal’

=e?(4mnI3)Y3(4mepkgT)=0.069, which is not strongly

1.05

frequency ® [units of (opll

FIG. 7. Imaginary part of the inverse dielectric function as a

degenerate® =2m.kgT(37°n) ~?3#2=2.34. The screen-
ing parameter iskp=(B2.e2n./ey)*?=2.15A; and the
plasma frequency w,=21.15 Ry. In Fig. 5 the real part of

function of frequencyw for a classical two-component plasma at
solar core conditions in comparison to the statically screened Born
approximation and the Drude model.
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) FIG. 9. Green functiorg,,(w,) in the ladder approximation.
L ol L i aaal L L1 . . . . . .
000% 1 I 10 100 This divergence is avoided if higher orders of the pertur-
frequency @ [units of , bation expansion are taken into account. The behavior for

large values ofg is determined by strong binary collisions
FIG. 8. High-frequency limit of the real part of the dynamical which are accounted for by summing up the so-called ladder
collision frequencyVLB as a function of frequencw for a classical diagrams in the perturbation expansion’ see F|g 9 and Ap_
two-component plasma at solar core conditions. pendix A4. In the quantum case, the divergence in the Born
_ approximation for large values af disappears, because the
[25]. While the Drude model shows the plasmon peak at theorresponding short-range part of the Coulomb potential is
plasma frequency the more consistent treatment of the dizyeraged out due to quantum effects. The typical length scale
electric function leads to a shift of the peak in comparison tgg the thermal wavelength. However, also in the quantum
the plasma frequency due to the imaginary part of the collizase the correct result in the low-density limit for the dc
sion frequency. The dynamical screening broadens the plagpnguctivity is only obtained after performing the sum over
mon peak and reduces the depth of the peak compared Witfie |adder diagramg]. Therefore, it is necessary to take into

the Drude model. o _ . . account strong binary collisions in order to evaluate the dy-
Note that the approximation of the dielectric function con-namical collision frequency in the low-density limit.

sidered here obeys the Kramers-Kronig relation. Since the \ye evaluate the correlation function, E87), in the limit
asymptotic form of the real part of the dielectric function is .9 The summation of ladder diagrams in the correspond-
given by lim, ..e(0,.0)=1—wp/w?+ - - -, the first-moment iy Matsubara Green functio’**(w,) is shown in Ap-
sum rules(9) are fulfilled following the argument in Ref. ,ongix A 4 for arbitrary mass ratia®; /m,. In this section
[14]. This has also been checked numerically. To fulfill theyye consider the adiabatic limih./m —0. thus

first-moment sum rules, the account of the imaginary part of e ’

the collision frequency appears to be crucial. It emphasizes

that an empirical improvement of the Drude formula intro- pladde ) — Aph? 2 PPL(vE 5:0¢, ladder (3
ducing solely a frequency-dependent relaxation time does NeMeQq ooy~ 2 21 POTTp1OT ety

not obey sum rules, and thus it is not a consistent approxi-

mation.

As already pointed out in the discussion of the Born approxi-

The _high-frequency behavior qf the collision frequency ismation, because of the conservation of the total momentum
determined by the Born approximation only, E@6), as only the interaction between electrons and ions will contrib-

derived in Appendix B. The imaginary part of the collision ute. With Appendix A4, Eq(A15), we find in the binary
frequency is found to be proportional & > It ensures the  |ision approximation

existence of the third moment of the imaginary part of the
dielectric function as required by the corresponding sum

rule, Eq. (9). A comparison between the exact dynamical . i eP(Enp=En'p) — 1
screening result and the high-frequency asymptote is showrf t“’):Qon
in Fig. 8. The Born approximation given in E¢B5) coin-
cides with the asymptote for frequencies down to about 9%(Enp)[1+ 9% (Ep)]
4wp|. X

eme nn’'P EnP_En’P

*
fi(w+in)+E,p—Eqp pe,Ep:i,q Vp(Pe.Pi)

B. Strong collisions 2

XV(Q)d¢np(Petd,pi—q) (36)

1. Summation of ladder diagrams

Considering the dc conductivity of Coulomb systems, the
collision integral in the Born approximation is divergent not with ,p(pe,p;) being the wave functionE,p the energy
only for small transfer momentg, which is cured introduc- eigenvalue for the two-particle state with center-of-mass mo-
ing the dynamically screened interaction as discussed aboveentum P and internal quantum number, and g®'(E)
As well known, see, e.q.8,13], for large values off the  ={exdB(E—u.—u;)]—1} ! the Bose distribution function.
collision integral in the Born approximation is divergent if By introducing T matrices, the following expression can
the classical limit is considered. be found[see Appendix A4, Eq9A20) and (A21)]:
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e'B(EEiO_ Egiq) -1

ladde — e _ g€ i _
VO =G ot 2 h(w+in)+ES—ES ESfo—ESqupe(l foora) (1= q)[(peerqZ)Te'(pe’p"qE o
) . 1 1
~Pe, TeilPe Pi i Efg) — E (Pe.s+ A7) Tei(Pe.Pi;a"iEpp) E7, £ ihy E.ET. ity
><Tei(pe+q’,pi—q’;—q’+q;Equ)]{(pe,z+qz)T;(pe+q,pi—q;—q,E,?fo)—pe,zT;(pe+q,pi—q;
”n n.—ei 1 1
—q;EY )+E(pez+q)Te.(pe+q Pi—0—q+a"En )| =
Epa Epg 'ﬁ” Ep, Epar tihi7
XTei(petq".pi—q";—q"; Ee'o)] (37)
[
where the abbrewatlonsTel(pe,p,,q E)=T.i(Pe,Pi;Pe 8 #n [ Bh2\52 (= )
+0,p—~q;E) and Efl,=Ej ., +E}, o were used. The v'add910)=ﬁwe'(2me) fo dk e AKIme o T (k).

Fermi functions occurring in the T matrices such as (1
- f,‘ie—f'pi) were neglected since we consider the nondegen-

erate case in the following. Equati¢A7) contains the half This way, the correct zero-frequency limit for the collision
off-shell T matrices for the electron-ion scattering, where thefrequency is reproduced.

energy coincides with either the incoming or the outgoing
energy, respectively. In general,

(40)

2. Numerical results

As above, we consider a hydrogen plasma at solar core
conditions. In the following, we perform the evaluation of
the expressiori37) for an effective interaction potential, re-
placing the Coulomb potential by(q) = —e?/[ €,Qo(q?
+K§ﬁ)], thus avoiding the divergences for smallThe ef-
fective screening parameteat,; was determined in such a
way that the Coulomb logarithm obtained from the Lenard-
Balescu collision terng33) for the dc conductivity coincides

d- with the Coulomb logarithm obtained for tl\ég?(q) in the
der approximation followso = egw?/»*¥%(0) in the ~BOM approximation so thatq=1.4Mpe’l e, [7,42). This

zero-frequency limit. From the general symmetry propertyexpressmn can be interpreted in such a way that the dynami-

Toi(Pe,pi ;a4 E)

=Vei(q)+ 2, Vei(@)—————
ei(@) qE ei(d )E_Eg:q/m
-q'+q;E) (39

XTei(Peta’.pi—a’;

holds for arbitrary values of enerdy.
From the complex dynamical collision frequency in la

rhs (w)=[rhs(—w)]* of the right-hand sidgrhs of Eq.
(37), we conclude that it must be real fer=0. Therefore, in
the decomposition due to the Dirac identitfw— o' +i7)

cal screening corresponds to an effective density ri.i7
between the electron densityand the density 2 of elec-
trons and ions.

= 77-6(&) w )+|P/((1) w ) 0n|y the ) funct|on descr|b|ng FiI‘St we consider the zero- frequency limit. The transport
the conservation of kinetic energy gives a contribution.Cross section ¢i(k) becomes in quasiclassical approxima-
Then, products of two on-shell T matrices remain which cartion [7,8,43
be expressed in terms of scattering phase shifts. The higher-

order products of T matrices in E¢37) vanish because the

difference in the square brackets is equal to zero. We ob
jaddey g, TP 2ee 1 o o
v r(O) Qomene4p%q qupe(l fpe+q)fpi(1 fpifq)
X 5(ngq_ |EeI0)Te|(pe,pI q;ES 0)

XTa(Petd,pi—a;—a;ES). (39)

In an adiabatic approximation, we perform the integrati

over p; to give a factom;Q)4 and relate the product of the T

sectior [ (k)
see Refs.

matrices to the transport cross

= (47K o1 +1)sifL &1 (0)— &K,

T k _ 47T| kzaB
tain Qei( )—EBzvn 0681’(: , (41)

where ag=4megh?/(mee?) is the Bohr radius. Performing
the integral ovek in Eg. (40) we find

4 n-,83/264
laddey (1) — !
Jaddegoy =~ o TP F
I( 3 mé/2(47760)2 ladder
on A
Lladder |n( 0. 765—> (42)
Be Keft

[7,8,42, wheresy'(k) are the scattering phase shifts. Taking From this result, we obtain the low-density limit for the dc

the nondegenerate limit, we obtain

conductivity,
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ladder_ 3 (47T€0) Ne 4

Tde T, o . 52262 Lladder (43) 0_25- )

which should be compared with the Spitzer form{Ba 02 _
£

- (47€p)? n o -
7gc= 0. 59133/2 2.2 |, ol S
-4

0.1 — T-matrix calculation
— - Born approximation

The Spitzer Coulomb logarithmL g,= In[(3/\/2)4mey/

(Be?kp)] coincides with the Coulomb logarithi,,gger iN 0051~

the ladder approximation for the screened interaction poten-

tial up to an additive constant reflecting the different treat- ol e
ment of the screening of the Coulomb interaction. Compared frequency @ [units of ]

with the statically screened Born approximation, where the

Brooks-Herring Coulomb logarithm appeaisf. Ref. [7]), FIG. 10. Real part of the collision frequeneff®®'as a function

the dependence of the leading logarithmic term of the virialbf frequencyw for a classical two-component plasma at solar core
expansion on density and temperature has been changed. Dgnditions.

spite the correct value for the Coulomb logarithm, obtained

in the T matrix approach in leading order, the prefactor doesVith the help of theés function one integral can be per-
not coincide with the Spitzer result. To obtain the correctformed, e.g., setting’ 2= p?+ 2m.w/#. In the limit of high
prefactor one can consider higher moments of the singlefrequencies, an evaluation of E@6) exhibits the same de-
particle distribution function as will be discussed in the fol- pendence om as in the Born approximation, however, with
lowing section. a prefactor depending on density and temperature.

After making the connection to the dc conductivity by = The evaluation of the dynamical collision frequency
considering the zero-frequency limit, we want to investigate,'299{ ) in the approximation Eq46) is shown in Fig. 10
the frequency dependence of the collision frequency, Edfor solar core conditions. It is compared with the treatment in
(37). The numerical method applied to evaluate the half off-the first Born approximation. While the overall dependence
shell T matrices is given in Appendix C. For the exploratoryon the frequency is similar, the approximations differ in the
evaluation given here, the higher-order products of the Tmagnitude. Taking into account strong collisions can lead to
matrices occurring in Eq37) have been neglected. Using collision frequencies up to 15% higher than the Born ap-
the relative momentunp, = (m;pe— Mep;)/(Me+m)~p,  Proximation if the frequency is in the vicinity of the plasma

the partial wave decomposition of the T matrix reads frequency.
. * . . IV. DISCUSSION OF CONVERGENCE PROPERTIES
T*(pe.piiG;E)= 2, (21+1)T(p,.|p,+0l;E)Pi(cosh) . . - -
=0 A. Dynamically screened binary collision approximation

(45 To give a consistent description of the effect of collisions

in a Coulomb system, we have to combine dynamical screen-
ing and strong collisions. Up to now there is no solution
available for the dynamically screened ladder approximation
in order to calculate a frequency-dependent collision term in
a one-moment approach which shall be callé®’ (). An

with the Legendre polynomialB,(cosé), 6 being the angle

betweenp, and (o, +q). Insertion of Eq.(45) yields, after
performing the integrals over the angular parts,

B —Bhw approximation for the static limit, which interpolates be-
Rep20de{ o) = dp pzf dp’ p'2 tween weak collisiongsmall transfer momenta), which
3 have to be screened dynamically, and strong collisiarge
g), where a ladder summation has to be performed, has been
s o 2Mew| - given by Gould and DeWitf45]. In this case, a statically
X8| pT—p't % ZO (I+1) screened potential is taken as an interaction for the ladder

summation, Eq(39), which coincides with a Boltzmann col-
lision integral in the kinetic equation, as well as for the
lowest-order(Born) collision integral, the static limit of Eq.
(26). The latter is subtracted and replaced by a dynamically

XH{p' Ty (p.p";ED) =P Ty 4(P.p" Ep)}

X{p' T (p". P ER) =P T 4(P' i E)} screened second-order collision integral. A similar approach
- . - was applied to the dc conductivity of a fully ionized, nonde-
+H{PTy (p.p" E,) =P Tioa(p.p" s ED} generate hydrogen plasnid2] where the Lenard-Balescu
collision integral, Eq(33), was used.
X{pT (p",P:E; ) — P T a(p . PER)]. Thus we construct a dynamical collision frequency which

interpolates between the Born approximation with respect to
(46) the dynamically screened interactiobP(w), Eq. (31), valid
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for distant collisions, and the Boltzmann expressiontivity. Furthermore, contributions due to the kinetic energy
v2d%eY ) Eq. (37), with respect to an effective statical po- current are taken into account. We will not repeat this deri-
tential, valid for close collisions. To avoid double counting, vation but only outline the main aspects.

the collision frequency in the Born approximatiof®™( ), We restrict ourselves to higher moments of the electron
Eq. (26), with respect to the same effective statical potentialdistribution function (adiabatic approximation Eq. (17),
has to be subtracted, with c=e. In analogy to the discussion in Sec. Il C, the only
contributions to the submatrix elements, Et4), in second
VP (0) = v () = 12 ) — 1B Mw) + 18 (w). order, come from the generalized force-force correlation
function

As Fig. 10 shows, the differences between the above ap-
proximations are most pronounced in the vicinity of the I';,° .ﬁ,c’ 2 '( BES) ( BES)™
plasma frequency. The effective potential can be introduced (Pos;Pomlurtiy % P=Pz(BEp) (BEp)
in the low-density limit in such a way that in the zero- ] ¢ o @)
frequency limit the collision frequency in the dynamically XM (v ivp detin: (50
screened Born approximation coincides with the collision k=0

frequency in the Born approximation for the effective inter- . .
action, see the introduction af.; in the preceding section. S€€ alS0 Eq(23). We introduce a renormalization factor

Considering the static low-density limit, the different "(©) [46], which relates thex-moment approach of the in-
terms coincide to give identical results fof0) in the order ~ VErse response function to the one-moment approach
ninn. The differences occur with respect to a factor within

the argument of the logarithm, which can be rewritten as a MM (0,) - IF (@)

constant(with respect ton) term in addition to Im. The r(N(w)= - = ,
determination of this constant demands an accurate treatment MBO0w) |0 Sm
of dynamically screened binary collisions. As long as we are S Mm(w)
interested only in the termn Inn, it is sufficient to use the
statically screened potential with the Debye screening pa- I m=012...n—1 (51)
rameter given above. Then we hav€?(w)~ 1P(w),
with
(2mB)*i*nie* [ d®p [ d%q
V(@)= i 322
3m3“e; 2m)3) (2m)3 e e
(F_;e :F_;e ) <P0,I ;PO,m>o)+i1)
y q2 eEES+q/2— eﬁES—qlz 1 Sm:ﬁ’ |’|m=T. (52
(kB+0%)2 AES o~ f(w+in) AES, 00170 (Po0iPou+isg
__;9n f“ _y“dy f“ dx e In the nondegenerate limit is
wtinJo (n+y?)2)-=
Loy sp=L(m+3)/T(%). (53)
X (48
Xy(Xy—=w=iz) In the static limit, the ratios for,(0) have been well in-
ith vestigated, see e.@§8]. The following ratios are obtained if
w we consider the moment8g,,Pg 4, and Pg, in the low-
1 et 5312 o B hZKZD density limit, describing a two-component plasma,
0=—F= <, 172 W=, N= .
242752 ml2e2 4kgT 8mekgT roo(0)=1, ry,(0)=2++2,
(49
rio(0)=1, ry(0)=6+11/2,
B. Renormalization factor r (w)
The dynamically screened binary collision approximation r(0)=2, ry(0)=24+157/8,

v(PI(w) or its extensions obtained by including density ef-

fects do not give the correct result for the dynamical conducyhere terms iny2 arise from electron-electron collisions.
tivity of low-density, nondegenerate plasmas. In particularyye obtain the renormalization factors, E€1), r(®(0)

the dc conductivity resulting from Eq39) contains a pref-  _ 1 r)(0)=0.5176,r?(0)=0.5123. The behavior of this
actor 3/(4/27)=0.2992 which does not coincide with the series, if further moments in the zero-frequency limit are
well-known Spitzer result 059[5] The correct pl’efaCtor is taken into account, was investigated:ar] and found to con-
approached if higher moments are taken into acc@,ﬂe]. verge against the Spitzer valueg 0)=0.2992/0.591

In particular, the inclusion of at least second mométftsin =0.5062. In the case of a Lorentz plasma, where only inter-
the set of quantum operators, E@7), is important because action between electrons and ions is considered, the renor-
then electron-electron collisions will contribute to the resis-malization factor isr (0)=0.2992/1.015%0.2945. In that
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case, the moment expansion converges more quickly witlp,. We obtain contributions from electron-ion as well as
r(l)(O) 0.3077, r(?(0)=0.2949. Subsequently, different from electron-electron scattering,
prefactors are obtained for the dc conductivity, E4B), or e . - ce e

the Brooks-Herring result, sd&]. ,p " p P + p : "
The frequency-dependent correlation functions of higher < o Om> +in={Po, Om> rint(Poys 0m> o

moments can be calculated similar to the force-force corre- (54)
lation function, Eq.(A6), with different prefactors i, and  In the Debye approximation, E¢48), we find
|
ei ei i neA3 f eBE3+q/2— effp-az 1 [( qz>
PoiiPomletin=— —Ni d3q —(BES, o)
< o} 0,m> +in ﬂ i 0( AEe —ﬁ(w-i—lr;) AE 2 (ﬁ p+q/2)
q q q
_(pz_ f)(ﬁEg—q/z)IH I0z+§Z (,BEE+q,2)m—(pz 52 (IBES—q/z)m}
g omele f Y R A A {x:y} (55
=—ig—— X| =——e —X; .
g B —» Jo (n+y?)? Xy(xy—w—iz) oYIm
The curly brackets stand for polynomialsxfndy. For1=0,1 we find
{X;y}too=1
Xy or={X;y}10=1+3x*+Y?,
{X;y}h1=2+ 10x%+ 9x*+ 2y % + 6x%y? + y4. (56)
The contributions due to electron-electron collisions follow as
<|'3ee_|'see> ' :_% 40, e_4 dSpJ‘ &5 jdg fz,+q,2fp /2 eﬁ(AEp QAR —1 [(p +%)(3Ee N
oM B (2m)° € (b +q2)2 o~ AES fiz+AES, —AEE L7002/
q q q
- ( P, 7) <BE$q,Z>'H( p,+ 5) (BEp+q2)"~ ( P, 5) (BEp-q2)"
’ d: e m g e m
+ pz_? (IBEp/_q/z) - +E (BEp/+q/2) (57)
The first nonvanishing contribution arises ferm=1,
Lee Lee Qomeng 2 1—e Y 19
. o= “x=-y__- - 2
(Po1iPopurip="192 3 fo (2n+y2)2 yoy—w=im |17 (58)

The real and imaginary part of expressigf$) and (58) have to be considered for an investigation of the frequency-
dependent renormalization factor. One integration in the imaginary part can be obtained ugirigrtbon. For the real part
a partial fraction decomposition has to be performed,

el e 7 oMNgN; 1—e‘4‘”f 2y3dy 2[W ]
IM(Poy i Pomosin=— WYTR YL
PoriPomdorin= =05 | 7y y22° i

R R mQomenZ 1—e %W = 2y3d 19 [w\?
Im<PZi;Pgi>w+i7]=_g\/§ cee f Y& e(W/yy)2[1+_(_) }1

B W Jo (2n+y?)? 4 \y
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Xtyiyhm 1 X7Yiyhm 1
xy+y?—w Xty  xy—yZ-w X—Y|’

Lei Lei 7TQOm NeN; [ —x2 ” y
RePl Py~ ~0™ g axe [y =

. 19 ) L 19 )
+Z(X+y) +Z(X )

Lee Lee ﬂ-QomengJ'w 2 ® y 1 1
Re&Po 1Py dusis= —gyV2 ———— dxe*XPfd — - .
d 0,1 0,1) +in g\/— B 0 0 y(2n+y2)2 Xy+y2_W X+y Xy_y2_W X—y
(59

Calculations of the renormalization functiofw) as a moments in the set of relevant observables, @d). In the
function of frequency have been performed for a hydrogerzero-frequency limitdc conductivity, results for the statical
plasma at solar core conditiona<0.006 05). The real and collision frequency»("0(0) as well as for the renormaliza-
imaginary part of the renormalization factof®)(w) for a  tion factorr(0) are known(7,8,13,42. The approach given

two-moment approach, where in addition ﬁg,o also '58,1 here allows the extension to finite frequencies.
was included, are shown in Fig. 11. The static limit of the
real partr*)(0)=0.6166 depends on the density and con-
verges slowly to the zero-density limi§)(0)=0.5176 when
the density is decreased. In the high-frequency limit, higher
moments in the generalized linear-response approach can beIn this work we presented a quantum statistical approach
neglected, and(w) converges to 1. The imaginary part is to the dynamical conductivity of low-density fully-ionized
zero in the static as well as the high-frequency limit. In theplasmas which can be given on the same level as the dc
intermediate region the renormalization factor is a complexconductivity, in particular in the nondegenerate case. Devia-
guantity. Besides the electron-ion collisions also thetions from the ordinary Drude behavior were obtained for
electron-electron collisions contribute, in contrast to the Lor<frequencies in the vicinity of the plasma frequency.
entz mode[46]. To formulate a quantum statistical approach, special at-
As a result of the above discussion of the convergencéention has been given to a perturbation expansion using the
properties of the collision frequency, we obtain the following technique of thermodynamic Green functions. Whereas the
renormalization of the frequency-dependent conductivityperturbation expansion of the dielectric function or the po-
o(w) in the long-wavelength limit, Eq6): larization function is divergent near the dc Ilimit
(lim,_olim,_), the perturbation expansion of the dynami-
2 cal local-field factor or the dynamical collision frequency is
€oWp) —0i R Lo
o(w)= ' (60)  convergent neain=0 in the long-wavelength limit.
—i[o+ir(w)rFI(w)] Partial summations are considered describing screening
and strong collisions. In this way, the static limit reproduces
the well known results for the dc conductivity. In particular,

single moment approach, EG7), within the dynamically the summation of ladder diagrams has been performed for
' X the dynamical collision frequency at arbitrary frequencies

screened binary collision appproximation. The renormaliza hich lead . ining half off-shell T .
tion factorr () takes into account corrections due to higher‘(’:"esIC eads to expressions containing halt off-shell T matri-

V. CONCLUSIONS

where (P9 (w) is the collision frequency calculated in the

The first-moment sum rules are fulfilled only if the com-
plex character of the dynamical collision frequency is taken
- ] into account. This has been shown analytically and numeri-
cally. In order to get a convergent third-moment sum rule it
is crucial to use a frequency-dependent relaxation time.

Furthermore, a frequency-dependent renormalization fac-
-y tor was introduced_ which d_escrib_es _the_influence_ of higher
05 — - Im(w) . moments of the single-particle distribution function, com-
pared with the one-moment approach, within a given pertur-
i 1 bation approximation. This way, the discrepancy between

ok '/’ ___________ ordinary linear-response theory leading, e.g., to the Ziman
Tl e formula for the dc conductivity for low-density plasmas, and
L s’ 1 kinetic theory, leading to the Spitzer result, is removed.
In this context, considering the complex dynamical colli-
05 it S i s g L sion frequency(w; T,n) as a function of the plasma density

n and performing a virial expansion with respectripthe

approximations given in the present paper allow us to deter-
FIG. 11. Renormalization factow) as a function of frequency mine the correct low-density behavior ofw; T,n), which is

o for a classical two-component plasma at solar core conditions. obtained taking the single-particle distribution as a set of

frequency o [ units of ® pl]
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guantum operatorfA;}. The inclusion of two-particle corre- (n° nc y(ired.2)
lations into the theory of dc conductivity is also of interest,* Pk’ "k «tin
seg[7,12], which leads to a virial expansion for the dynami- A1

cal local-field factorG(IZ,w) or the dynamical collision fre- =0
guencyr(w) if considered as function of the plasma density.
Numerical results were shown for a fully ionized plasma,
as it is found for hydrogen at solar core conditions. The >
results given here should be compared with results from
computer simulations. However, quantum statistical simula-
tions for the dynamical conductivity in low-density plasmas f;,_klz— f;,,+k,2
are difficult at present. c .
Using our results for the dielectric function, applications ABp—fi(w+in)
to various measured properties of nonideal plasmas could be 1 £ _fC
considered. E.g., it is possible to calculate the reflectivity of +V(p—p) p'—ki2 p'tki2
a plasma at a given density and temperature. However, to e AE;, K AE;, h(w+in)
make the connection to experimentally obtained reflectivi- ' ’
ties, one has to consider the hydrodynamical expansion of
the plasma, e.g., by using density and temperature profiles X (AEp +AE;, ,—fiw)
from a hydrodynamical simulation code. This is beyond the
scope of the present paper and will be considered in a forth- ) ] ]
coming one. Other applications are experiments measuringo" t.he purrent—current correlation function the first-order
the dynamical conductivity of electron-hole plasmas in ex-contribution follows as
cited semiconductors, see Rpt7]. o
The approach given in this paper relates to weakly(Jg';Jg) 155"
coupled, fully ionized plasmas. Improvements are necessary i »
for high-density, strongly degenerated plasmas. In particular, =-— 3 a0z 2 (mcec)z(f;+k,2—fg,k,2)
the treatment of the ionic structure factor, the inclusion of h ?Offk pp'c
local-field factors and the introduction of an effective XVed P=P)(fo 12— Fori2)
pseudopotential in order to take into account strong colli- 1 1 2
sions have been discussed in connection with experiments in X p,—M(w+in)/(hk) p.—mw+in)l (k)]
metal vaporg16,18,23. 2 (A2)
The treatment of partially ionized plasmas within the gen-
eral approach given here has been well investigated in the In addition to the first-order contribution of E¢L8),
static limit[8]. The frequency dependence will be the subject
of further work. A_nother direction of future investigation M (med D ) = ( el j§|>grﬁd7}1)/[ ( jﬁ'; jﬁl}i&)r i”]z, (A3)
will be the extension of the presented approach to thermo-
electric properties, including frequency-dependent ther
mopower and thermal conductivity. For these quantities, th

fo_w2—fp
L p—k/2 p+k/i2
'B AE} AE]  —h(w+in)

- 5pp’2 Vcc(p_ p”)
p// AE([:),k

(2AES  —fiw)

. (A1)

there are further reducible diagrams of first order where the

generalization of the static limit, s¢8,13, to finite frequen- nteraction line connec.ts two loops. The Ia}:glar»e imme-
cies should also be possible within our approach to th&t€ly ~evaluated — with — the result M Uk, 0) =
linear-response theory. —_|§QO/(60@). Substituting Eq(A2) into Eq.(A3), we find
within the single-moment approach for the dynamical local-
field factor of a two-component system, E46), the result
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for support within the Schwerpunktprogramm “Wechsel- 1 in Eq.(16). Thus, the account of only one reducible term
wirkung intensiver Laserstrahlung mit Materie. M(red,l)(lz,w) is equivalent to an infinite partial summation in

X(E,w) leading to the RPA result.
We add some general expressions which are of use to
APPENDIX A: EVALUATION OF CORRELATION elaborate also higher-order perturbation expansions. Making
FUNCTIONS WITH THE GREEN-FUNCTION TECHNIQUE use of partial integration and the Kubo identity, we can ex-

1. First-order perturbation expansion of G(K,®) press the current-current correlation function as

The irreducible first-order contributions to the density- i 1 - -
density correlation function in E¢21) are given by the self- <Je|;Jﬁl>w+in:_(Je| ;J§|)+_2<J9|;Jﬁl>w+i7] (A5)
energy and vertex type contributions w w
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by the Kubo scalar product, E€RO), and a force-force cor- Substituting this into Eq(27) yields in the long-wavelength
relation function. Expressing the time denvatn)& of the  [limit

particle current operators according to E22) and applying

further partial integrations we have

: ih N
o 2 v w)= ;
Y he eceq Q 2 : c c
(I 3k >z:§ —— > p.p, 0€0wpi pp'ace’ i(w+in)+AE, ;—AEy,
o McMer pp’
o y 1 e_g_ el
x| (hw)? <vp'k’vp'k’>,z AES, —AES (M mem,
(AEj «—h2)(AE,  —h2) .
, XqZVcc’(Q)f ’+q/2(1 fp —q/2)f -q/2
i AEpAE, o
_%ﬁ;—ﬁ(ng'k;np"k) X (1=, q2) +exch. contr. (A8)
Pk
_ AEg,k (nc ¢ ) Performing the summation over the species leads to expres-
AES,—fiz PP sion (26) in Sec. IlI.
AEg'k c i C/ . . .
—ho (vp,k'np’,k) . 3. Summation of ring diagrams

c _ ¢ _
(AEp —h2)(AE,, (—h2) The summation of ring diagrams leads to the screened

(AB) interaction, given in Fig. 4. In the following, we shall detail
the evaluation of the first diagram only. The contribution to
In this expression, the first term is explicitly proportional to the Gregn functio,, (w,) from this diagram can be written
o5 . R _ down with the help of the spectral representati@8) of the
thus the correlation functiotw k'v , k>z itself can be  screened potential,

treated at zeroth order to evalugté'; J fl',’f,d,]z’ All other . .
terms have to be evaluated within ﬂrst or second-order per- (0.)= — 8408 E fp+k/2+q/2_fp7k/27q/2
turbation theory. Because &fEg , =7 p,k/m¢e<k they do not vl P ce! Tpp’ & AES
contribute to the second order in the long-wavelength limit,

cf. [7] for the zero-frequency limit.

p.k+q —hw,

dolme™ Yq, w+|0)

xVeda) [ i

o\tw,~—o

2. Born approximation

= 8ocr Oppr[ o kiarqr2— Fo—wiz—q2l Ve @)
We will show the evaluation of the correlation function co PR pTiiETa P a °

<vgyk;v,§i,k>z, Eq. (25), using the method of thermodynamic XJ d(hw) Ime *(qw+i0)
Green functiong38]. The Feynman diagram for the Green T AES +ﬁwﬂ—ﬁg
function G,,(w,) corresponding to the correlation function
according to Eq(15) was shown in Fig. 1. Different approxi- X[g(AEg’Hq)—g(ﬁw)], (A9)
mations are possible.
In the lowest approximation with respect to the interaction

we treat the corresponding four-particle Green functionwhereg(E)=[exp(BE—1)] ! is the Bose-Einstein distribu-
Gyu(w,) as a product of four single-particle Green functions,tion function. After analytical continuatiom,— w+i 7, the

p,k+q

see Fig. 2. We find imaginary part of this expression reads
<Upk v /k>(2)
] AEY _AgS IMG,,(w+in)=dc 5pp’[fg+k/2+q/2_ f;—k/z—q/z]
_ | 2 eﬁ( [s| pk+q) 1 cd(Q) X[ (AEC ) (AE P )]
= w
hB Giqa fiz+ AEf —AEC, AEf—AEC, 92k 70 b g
XVee(@)Im e Y(Q,AE] . /i + 0 +in),
><f|+q/2( | q/Z)fp k/2—q/2 (A10)
X(1- fE+k/2+q/2){5p,F+q/2_5p,57q/2}
X[Ved() See{8pr prqi2— Spr p—qi2} which leads to a contribution to the correlation function
Vo Q4K S5 By 1 a—ar2 (vgk;u;,k)ﬁff?n according to relatioril5). The w integration

can be carried out utilizing the expressi@0). In the long-
— 8pr 1+ w2+ g2y T EXCh. contr]. (A7)  wavelength limit we find



PRE 62 LONG-WAVELENGTH LIMIT OF THE DYNAMICAL . .. 5663

; ¢ .. c' \(2LB)
“m<vpk'vp’k>w+i77

V(1,2= Vclci( | 52_ 51| ) 5clczac1,c2, 5p2—p1;pi— pé-
k—0

i 5 Vi{a)

_'s With Kp(l)zﬁp,pl for the lowest moment, the analytical
P50 erpa(0 AE R )2

expression reads

c
£ f

: c c
h(w+i n)—AEp,’q-I—AEp'q

_ &
+q/2 p’'—ql2

X

gw(wﬂ)=12§M V(1,2[Kp(2)—Ky(1)]

X Go(1,3;0\+ 0, )V(3,4[Kp (4) =Ky (3)]
X Go(4,2;0)). (A14)

c c
fp+q/2_ fpfq/2

c c
AEp,‘q AEp’q

x [9(AES )~ g(AES, )]

X{0p,p+a2™ Sp,p-a2H{ Op' prar2 Spr p-ai2}- (ALD) In the low-density limit wheref;<1, the two-particle

) _ ) propagator is given in terms of the solution of the two-
The evaluation of the second diagram does not contribute tgarticle Schidinger equation, see Sec. B 1, as

the considered density order, §&8. The third diagram has
the same structure as E@\11). It corresponds to the double-
exchange term of the Born approximation, see the second
term in Eq.(A7). Finally, we find the dynamical collision
frequency, Eq(27),

Ynp(1) ¥np(2)

Al5
oy~ Enp ( )

G2(1,2,0y) = %

vB(w) N .
Performing in Eq.(A14) the summation ovew, , the Bose

distribution function occurs. After some straightforward cal-

ﬁQoeow; pp’gcc’ |6RPA(q1AEg',q/h)|

e? 1 ek

m; |€RPA(q,AE,C,Ir,q/h)| MM

1

fe —f¢
> p+q/2 p—q/2
|€rpa(0,AE; o/70)]

Ai(w+i n)—AE;,'q-i—AE‘c)’q

’ !

c c
fp’+q/2_fp’fq/2

X o .
AEp,’q— AE;

[9(AES ) —g(AES, )], (A12)

where the term proportional te.e.,/(m.m.) originates
from the third diagram in Fig. 4. Performing the summation

over the species leads to express{dh) in Sec. Il A.

4. Summation of ladder diagrams

culations the resul{36) is obtained.

We also can express the dynamical collision frequency in
terms of the T matrix. We use the operator form and give the
representation with respect to the two-particle basis at the
end. With the relation

Go(2)= F do ImGo(wtin) (A16)

U Z—w

we find

* dw ([~ do’ )
gvv(wM):f_m7f_mT[V,Kp]lm gz(w+|7])

X[V, Ky JImGy(0' +in)F(w,,w,0"),
(A17)

To describe the effect of strong collisions we perform the
summation of ladder diagrams, corresponding to Fig. 9. In

the long-wavelength limit the observable%k, Eq. (22,
shall now be written as

i
vho=7 % V(1,2{8p,p,~ Op.p,}

+

+
X Oec,@p, ’Clapi ,ciapz 48p, (A13)
where
1=(py,C1;P1,C1)
and

with

1 1

F(wﬂ,w,w')ZE

oy, O\TO,~0 ¢ — @'
eﬂ(wfw’)_l . .

=——0%(w)[1+g%(w")].
a)’-l-wlu—a)

(A18)

Now we utilize the optical theorem
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—in if the q dependence of the Coulomb potential is inserted and
Im G(w+in)= (o—A+in) (w—H=17) the static structure factor is assumed toSyg) =1.

K K In the degenerate limjtd=1/(BEg)<1], the imaginary
part of the dielectric function if48]

— _ 40 ;
_w—H+i77(w H i) )
lim Im egpa(q, ®)
—i77 6—0
X T T
(o—H+in)(o—H"—i7n) Afwl(Ecz®) : (uxz)?<1
_ ={ A(1-(u—2%1Z% : (u—2)?<1<(u+z)?
_HO_ -
*(@ ”])w—H—In 0 : 1<(u—2)>%
=G, (0)[Gg (@)1 'IMGg(w) (B2)
X[Go ()]G (w) using the reduced variables= mow/(#%kgsq),z=q/(2kg), A

=(37-r/128)(hwp|/EF)2. For sufficiently large values ab,
(u+2)? is always larger than unity. Applying the transfor-
(A19) mation q=kgk, we are able to perform thg integration in

Eq. (B1),
mew K 2
1-| —5- 3
fikgk

Mew
=|1+ POy [In(a+1)

F

=V T (w)ImG; (o) T (0)V 1

where relations like/G, (w)=T*(»)G o (w) were used. In-

sertion gives o a+1dk
f dqq2 Im e(q,w)OCJ ?
0

* do (* do' . B at
gvu(w,u):f_w?f_lemQO(w)T (w)

X

1 - ’ + ’ + ’
Kpr,v}T (0")IMGy (") T (") in(a—1)]-a

T w)F (o, 0,0). (A20) M
a=\/1+—5 (B3)
fikg

With T (0)=V+VGy (o) T (0)=V+T*(0)Gq (w)V,
we get relations such as ()T (o')=1

1
X Kp,v

9 The asymptotic form of this expression in the high-frequency
+Go(0)T (@), so that limit is proportional tow ™2, corresponding to a power law
o~ for Rev(w).

_ Ll In the nondegenerate limit (& 1), the imaginary part of
T (@) Kp"v}T (") the dielectric function i§48]
:Tf(a))Kp,—KprTf(w’) WXS ) )
_ _ , _ _ , i — _ AV Bura—(u=2%10_ n—(ut+2z2)“/0
+T (0)[KpGg (0) =G (@)K 1T (0'). im 1M erea(0,0) =3 6™ e e 1
(A21) (B4)

Insertion in Eq.(A20) and representing the operators with The integration with respect tq, carried out analytically,
respect to a two-particle basis leads to the re@il. results in a collision frequency proportional to a modified
Bessel functiorj49]

APPENDIX B: HIGH-FREQUENCY BEHAVIOR 1 B Bh
w w
OF DYNAMICAL CONDUCTIVITY Reu(w)oczsinl-< 5 )K()( 5 ) (B5)
In this appendix we give details on the determination of

the high-frequency behaviab— <« of the dynamical colli- The high-frequency limit [49] K(2)~ Jal(22)e %(1
sion frequency in dynamical screening and in ladder approxi-_ 1/(82)+ . . .) gives a dependence af ¥2 again

mation. We start with dynamical screening as given in Eq. Thus, the asymptotic form of the real part of the collision
(32). Since the real part of the RPA dielectric function is frequency is given by Re(w)ow 32 in the degenerate as

unity in this limit, we obtain Ime (g, @)~ —IM &(d,®).  \aiias the nondegenerate limit. As a consequence, having in
;g?ié'r'gng(gghg\é'gr |i\s/et2ebsame as for the Born apProXimind that the asymptotic expansion of the dielectric function
» £G<D), and g y reads e(w)=1-wi/w’+iwip(0)/0+0(w ?), we get
Im e(w)xw™ %2
Rev(w)x ifmdq @ Im e(q,w) (B1) _ Th_e absorption coe_fficienpz(w) f<_)r radiation and the_
wJo imaginary part of the dielectric function are connected via
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2y
lim Im e(q, o), (B6) I'(p, ki k) =Vi(p,k)

a(a)):cn(zu)%O

1 fw
+— | dq A (p,q;k*)T(a,k;k?),
wherec is the speed of light and(w) the index of refrac- 27%J)o aqaip.d |

tion. Using this relation, the asymptotic scaling of the imagi-

nary part of the dielectric function compares to known re-

sults for the frequency dependence of the absorptionvith the kernel

coefficient of thermal bremsstrahlung at high temperatures

[50]. oo V(Pp,a)—V(p,K)yi(k,a)
The frequency dependence of the dynamical collision fre- Al(p,g;k%) = K2— o2 (€3
guency in the ladder approximation can be determined by q

exploiting the known off-shell behavior of the Coulomb T which is nonsingular in contrast to the one in EG1). The
matrix[51]. Inserting the analytic expression of the half-off- function v,(k,q) is subject to the condition,(k,k)=1 and
shell T matrix into Eq.(37) results again in a frequency can be chosen to optimize the numerical expense. The inte-

(C2

dependence according to 2. gral equation(C2) can be solved by standard techniques for
Fredholm equations such as the Nystrom method. The on-
APPENDIX C: NUMERICAL DETERMINATION OF THE shell T matrix is obtained from its solution according to
HALF-OFF-SHELL T MATRIX
T'(k,k;k?)
The Lippmann-Schwinger-equatid88) for the T matrix Ti(k,k;k?) = 5
in partial wave expansion, Eg45), is given by 1— ifwdq @ yn(ka)T'i(q,kk)
2mw?Jo K2—q?+ie
,Vi(k,)Ti(q.k";2) (C4

1 0
Ti(k,k";2) =V (k,k")+ —f daq
2m?Jo

z—q’ 1) and the half-off-shell T matrix using the relation

[ I'(p,k;k?)
whereV, represents the expanded potential. FollowiBg] T(p.k:k?) = Tk kKD, -
we introduce the auxiliary integral equation —Fl(k,k;kz)
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